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18  Abstract

19  The Vocontian Basin in southeastern France records a long-lived history of subsidence and
20  polyphase deformation at the junction of Alpine and Pyrenean orogenic systems. This study
21  aims to reconstructed the geodynamical evolution of this basin, based on new U-Pb dating of
22 calcite from veins and faults combined with RSCM thermometry and stratigraphy-based burial
23 models. Three main generations of calcites are dated: (1) Late Cretaceous to Paleocene dates
24 related to Pyrenean-Provencal convergence (~84-50 Ma); (2) Oligocene dates linked to the
25  West European Rift extension (~30-24 Ma); and (3) Miocene dates ascribed to strike-slip and
26 compression associated with Alpine collision (~12—7 Ma). No older ages related to the Jurassic
27  and Early Cretaceous rifting phases are obtained suggesting limited syn-rift fluid circulation or
28  subsequent dissolution of early calcite mineralization. RSCM data highlight a pronounced E-
29 W thermal gradient, with peak temperatures exceeding 250°C in the eastern basin, consistent
30  with crustal thinning and/or salt diapirism. These results emphasize the large-scale impact of

31 the opening of the West European Rift in SE France and underscore the possible mismatch
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32 between the large-scale tectonics and the tectonic history inferred from calcite U-Pb dating,
33 which is sensible to presence of fluids and the physical conditions for their preservations.

34

35 1. Introduction

36  Sedimentary basins located in the external part of orogenic belts can provide critical insights
37  into the polyphase and complex evolution of tectonic plate boundaries. The Vocontian Basin in
38  southeastern France is currently positioned at the front of the southern Alpine belt, to the north
39  of Provence (Fig. 1). This basin recorded a succession of tectonic events spanning from the
40  Late Cretaceous to the Cenozoic (Roure et al., 1992; Homberg et al., 2013; Mouthereau et al.,
41  2021) (Fig. 1). These different tectonic events have been attributed to the Mesozoic rifting
42  associated with the opening of the Alpine Tethys and the Atlantic Ocean-Pyrenean rift,
43  Cenozoic inversion of the rifted margins during the development of the Pyrenees-Provence
44  collision and the Eocene-Oligocene to Miocene extension associated with the opening of the
45  West European Rift and the Gulf of Lion (e.g., Stampfli, 1993; Homberg et al., 2013; Bestani
46  etal., 2016; Espurt et al., 2019; Célini et al., 2023). Some details of the tectonic evolution of
47  the Vocontian basin, positioned at the intersection between the Europe-Iberia and Europe-Adria
48  plate boundaries are however debated. A long-standing debate persists on whether the Mid-
49  Cretaceous Vocontian Basin, north of Provence, is part of a continuous rift system between the
50  Valaisan/Alpine Tethys in the east and the Pyrenean/Atlantic Ocean in the west (Trimpy, 1988;
51  Stampfli, 1993; Stdmpfli and Borel, 2002; Turco et al., 2012). In contrast, other studies suggest
52  that the Vocontian Basin, while belonging to the broader Pyrenean/Atlantic rift system,
53  remained structurally disconnected from other Pyrenean and Provengal rift segments
54  (Debelmas, 2001; Manatschal and Muntener, 2009; Angrand and Mouthereau, 2021; Célini et
55  al., 2023; Boschetti etal., 2025). In the latter hypothesis, Provence forms a rather small emerged
56  continental domain between two Cretaceous rift segments.

57  The analyses of Raman Spectroscopy of Carbonaceous Material (RSCM) temperatures from
58 the Digne Nappe, in the eastern part of the Vocontian basin (Fig. 2A), supports a tectonic model
59  in which the Vocontian basin resulted from two superimposed phases of crustal thinning. The
60  first one is dated to the Upper Jurassic and coincides with the Alpine Tethys opening. The
61  second phase, characterised by temperatures in the basin exceeding 300°C, is believed to have
62  occurred during the Lower Cretaceous period, when the Pyrenean rifting led to continental
63  breakup in the Valaisan domain (Célini et al., 2023).

64  Despite the well-established structural and sedimentary constraints on the tectonic evolution of

65 the basin, including clear evidence for syn-depositional normal faulting in the mid-Cretaceous
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66  (e.g., Homberg et al., 2013), precise geochronological constraints on the timing of rifting and
67  subsequent inversion are lacking. Resolving this question is critical, as the timing of the end of
68  Cretaceous extension often overlaps with the onset of Pyrenean compression (Bilau et al.,
69  2023). Furthermore, it is unclear whether this part of the Alpine foreland experienced the same
70  extension associated as the West European Rift, as seen in the Valence and Manosque basins
71  (e.g., Ford and Lickorish, 2004).

72  This study addresses these questions through an approach combining U-Pb dating of calcite in
73 faults and veins complemented with new RSCM thermochronology and analysis of the burial
74 history of the Vocontian basin. We aim to clarify the interactions between the different tectonic
75  systems that developed in SE France by establishing a robust chronological framework. Our
76  findings have significant implications for our understanding of polyphase deformation at the
77  Europe-lberia-Adria plate boundary.

78

79 2. Geological setting

80 Positioned at the front of the Western Alps, the Vocontian Basin is part of the Southern
81  Subalpine belt produced by the interactions between the Pyrenean-Provencal belt to the south
82  and the Alpine belt to the east (Philippe et al., 1998; Balansa et al., 2022; Célini et al., 2024;
83  Fig. 1). Itincludes the Diois-Baronnies region, and it is bordered by the Rhéne Valley and the
84  Massif Central basement to the west, the External Crystalline Massif of Pelvoux to the east, the
85  Vercors Massif to the north, and the Provencal Platform to the south (Figs. 1, 2A).

86  The Vocontian Basin is filled by approximately 2,600 m thick succession of mostly Mesozoic
87  deposits along its margins reaching a thickness of up to 7,000 m in its center (Fig. 2B).

88  The base of the folded stratigraphic sequence is made of upper Triassic evaporites which have
89 led to the development of salt diapirs piercing the sedimentary cover (Suzette, Propiac diapirs),
90  orcontrolling certain features of the basin including thickness variations (Fig. 3A) (Célini, 2020
91  and references therein).

92  The subsidence at the origin of the basin initiated with the opening of the Alpine Tethys to the
93  east during the Early to Middle Jurassic. This period is marked by the deposition of alternating
94  shallow marine limestones and marls, followed by deepening marine environments culminating
95  with the deposition of organic-rich black shales of the “Terres Noires” formation during the
96  Bathonian—-Oxfordian (Fig. 2). In the Late Jurassic, the basin underwent NNE-SSW-directed
97  extension, as recorded by syn-sedimentary NNW-SSE-trending normal faults (Homberg et al.,
98  2013). This extensional regime, consistent with the propagation of the Alpine Tethys, led to the

99  deposition of fine-grained bioclastic Tithonian Limestones, which form a distinctive
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100  morphostructural marker and reflect slower subsidence (Remane, 1970; Joseph et al., 1988).
101  The subsidence continued throughout the Early Cretaceous (Valanginian-Aptian) period,
102  during which alternating layers of marls and limestones were deposited, shaping the “Vocontian
103  facies”. These deeper marine deposits contrast with the shallow-water carbonates of the Vercors
104  platform to the north, known as the “Urgonian facies™ (Fig. 2A).

105 A major shift in tectonic regime occurred during the Aptian—Albian, marked by increased
106  subsidence and the deposition of thick marly sequences ("Blue Marls"; Debrand-Passard et al.,
107  1988) (Fig. 2B). This phase is associated with the development of E-W-trending normal faults,
108  suggesting a reorientation of the extensional stress field from NNE-SSW (Late Jurassic) to
109 WNW-ESE (Homberg et al., 2013). This shift is interpreted to reflect plate tectonic
110 reorganization, linked to the onset of Europe—lberia divergence (Bay of Biscay opening) and
111  the closure of the Alpine Tethys through Europe-Adria convergence (Lemoine et al., 1987;
112 Stampfli, 1993).

113  During the Late Cretaceous, sandstones were deposited in the west whereas limestones
114  predominated in the east of the basin (Fig. 2). At the current location of the Dévoluy massif, in
115  the north-eastern part of the basin, a stratigraphic hiatus of the Turonian, Coniacian to the
116  Santonian (Fig. 3B) is documented, regionally referred to as the Turonian unconformity. It is
117  marked by the argillaceous to sublithographic limestones of the lower Cretaceous and E-W
118 trending folds which are in direct contact, below an erosional surface, with bioclastic and
119 terrigenous deposits of the Campanian-Maastrichtian (Fig. 2-3B; Gidon et al., 1970; Arnaud et
120  al., 1974). In the entire Vocontian basin the main stratigraphic hiatus corresponds to Paleocene-
121  Early Eocene (Fig. 2B). This late Cretaceous-Paleocene is coeval with the onset of Iberia-
122  Europe convergence, marking the initial stages of the Pyrenean-Provencal orogeny from ~84
123  Ma (Angrand and Mouthereau, 2021; Mouthereau et al., 2014; Mufioz, 1992; Teixell et al.,
124  2018; Ford et al., 2022). These deformations are consistent with the exhumation at ~85 Ma of
125  the Pelvoux crystalline basement to the northeast (Fig. 2; Boschetti et al., 2025).

126  After this tectonic change, only limited and localized marine incursions occurred from the Late
127  Eocene to the Miocene (Fig. 2B). This period corresponds to the early Alpine collision, which
128  affected the internal domains and the eastern parts of the External Crystalline Massifs.
129  Meanwhile, regional-scale extension developed in the European plate due to the evolution of
130  the Western European Rift system and the opening of the Liguro—Provencal back-arc basin in
131  southeastern France (Fig. 1) (Hippolyte et al., 1993; Séranne et al., 2021; Jolivet et al., 2021).
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132 In the eastern part of the basin, the latest compressional phase is recorded by N-S to NW-SE-
133 trending structures associated with the Digne thrust (Fig. 1-2) and final Alpine exhumation
134  between ~12 and 6 Ma (Schwartz et al., 2017).

135

136 3. Sampling and methods

137 3.1 Sampling strategy

138  The sampling sites were carefully selected to characterize both the nature and ages of the brittle
139  deformation that affected the Jurassic and Cretaceous formations within the Vocontian basin
140  (Fig. 2A). The main structures were first identified based on the work of Homberg et al. (2013),
141 who described syn-extensional features in the Vocontian Basin that were formed "shortly after"
142 sediment deposition. We used the 1:50.000 scale geological maps from Die to Sisteron to select
143 our sampling targets.

144

145 3.2 Tectonic and paleostress analysis

146  To reconstruct the tectonic evolution of brittle deformation in the VVocontian Basin, fault-slip
147  data and other stress indicators like calcite veins, were measured in the field and collected for
148  U-Pb dating. Local stress states were inferred by inverting fault slip data using the methodology
149  outlined by Angelier (1990), implemented in the Win-Tensor software (Delvaux and Sperner,

150  2003). This analysis provided the orientation of the three principal stress axes (c1, 62, and ¢3)

o

2-0
ol-

:3 , reflecting the relative

151  and the shape of the stress ellipsoids defined by the ratio ¢ =

152  magnitudes of the principal stresses. Relative chronology between the reconstructed stress
153  tensors was achieved through cross-cutting relationships between generations of veins and
154  faults (normal, reverse, or strike-slip faults). Chronology with respect to folding was further
155  refined by comparing the orientation of faults, veins, and/or associated stress states in their
156  present-day configuration and after unfolding. This approach assumes that faults were
157  neoformed according to an Andersonian state of stress, with one principal stress axis being
158  vertical.

159

160 3.3 Calcite U-Pb geochronology

161  Prior to U-Pb analyses, each polished thick section was petrographically characterized at IPRA
162  (Institut Pluridisciplinaire de Recherche Appliquée) in Pau, France. This characterization
163  involved the use of an optical microscope coupled with cathodoluminescence (CL) imaging to

164  identify multiple calcite generations. CL images were acquired using an OPEA Cathodyne
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165  system coupled with a Nikon BH2 microscope, operating at an acceleration voltage of 12.5 kV
166  and an intensity of 300-500 mA. The U-Pb absolute dating of calcite was performed at IPREM
167  (Institut des Sciences Analytiques et de Physico-Chimie pour I'Environnement et les Matériaux)
168 laboratory, following the analytical approach described by Hoareau et al. (2021). This method
169  employs isotopic mapping of U, Pb, and Th via a continuous ablation process, combined with
170  avirtual spot method to construct Tera-Wasserburg (TW) plots (Hoareau et al., 2021, 2024). A
171 comprehensive description of the analytical procedure and data processing is provided in the
172 Supplementary Material 1 (Tab. Al, Tab. A2). The analytical setup included a 257 nm
173 femtosecond laser ablation system (Lambda3, Nexeya, Bordeaux, France), operating at a
174  frequency of 500 Hz with a spot size of 15 um. Ablation was conducted in a controlled
175  atmosphere composed of helium (600 mL/min) and nitrogen (10 mL/min), which was
176  subsequently mixed with argon in the ICPMS. This system was coupled to an HR-ICPMS
177  Element XR (ThermoFisher Scientific, Bremen, Germany) equipped with a jet interface
178  (Donard et al., 2015).

179

180 3.4 Burial history

181  The subsidence history of the Vocontian Basin was reconstructed using stratigraphic sections
182 including thicknesses and lithologies, from the 1:50.000 scale geological maps of Die, Mens,
183  Dieulefit, Luc-en-Diois, Gap, Nyons, Serres, Laragne-Montéglin, Vaison-la-Romaine, and
184  Séderon, providing basin-wide coverage (Fig. 4). Standard backstripping techniques (Allen and
185  Allen 2013) were applied for this analysis._The sedimentary units were first decompacted using
186  a coefficient corresponding to the main lithology (limestone, marl or clay) and stratigraphic
187 ages inferred from the geological maps. To enable comparison between the different
188  sedimentary columns, the stratigraphic columns were resampled at regular temporal intervals,
189  every 1 Myr, grouped into bins of 5 Myr and finally interpolated using the 2D spline method.
190

191 3.5 RSCM thermometry approach

192  To determine the peak temperatures reached by sediments and metasediments in the VVocontian
193  basin, we conducted RSCM analyses on an initial set of rock samples collected from Middle to
194  Upper Jurassic and Lower Cretaceous carbonates close to U-Pb dated calcites (Fig. 2A, 4). For
195  comparison, this set was complemented by a second set of samples further eastwards in, or near,
196  the Authon-Valavoire thrust nappe (below the Digne nappe) where deeper Lower Jurassic strata
197  of the Vocontian are exposed and diapirism has been described (e.g., Célini et al., 2024). The

198 RSCM approach is used to understand thermal processes ranging from advanced diagenesis to
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199  high-grade metamorphism, covering temperatures from 100 to 650°C (e.g., Ayoa et al., 2010;
200  Koukestu et al., 2014; Schito et al., 2017). Depending on the temperature range and the
201  geological context, different calibrations are proposed. In this study, we applied the calibration
202  of Lahfid et al. (2010) for temperatures ranging between 200 and 340°C, and the qualitative
203  approach proposed in Saspiturry et al. (2020) for lower temperatures between 100 and 200°C.
204  The analyses were performed at the Bureau de Recherches Géologiques et Miniéres (BRGM,;
205  Orléans, France). The Raman spectra were obtained with a Horiba LABRAM HR instrument
206  with a514.5 nm solid-state laser source for excitation. The laser is focused on the samples with
207  a BxFM microscope using a x100 objective with a numerical aperture of 0.90 and under 0.1
208  mW on the sample surface.

209

210 4. Results

211 4.1 Microtectonics and paleostress reconstructions

212 Veins and striated planes associated with folds (Fig. 5A), reverse faults (Fig. 5B) and normal
213  faults (Fig. 5C) were measured and sampled. Stereodiagrams of beddings, fault-slip data, veins
214  and, when necessary, their associated back-tilting state of stress, are presented in Figure 6.
215  When the number of fault-slip data was sufficient for inversion (a minimum of four is required),
216  the calculated stress axes have been reported (Fig. 6; Table 1). In this section we first present
217  data from samples VOC-23-09a to VOC-23-16d (in numerical order) and then introduces
218  samples BON-23-01, 02, and 03, along with GLAN-23-02, which belong to a second and
219  separate field campaign. No measurements were conducted for sample VOC-23-01a and VOC-
220  23-01b, as the sampling area is located within a diapiric structure of the Dentelles de Montmirail
221  (Figs. 2A, 6), preventing a reliable interpretation of the paleostress tensor.

222  The sampling area of sample VOC-23-09b shows a majority of strike-slip faults, for which
223  paleostress inversion reveals a strike-slip regime resolving a NW-SE-directed compression
224  (Fig. 6). At site of sample VOC-23-11a bedding is flat. We resolve a strike-slip regime with
225  paleostress reconstructions that indicate a NE-SW compression and NW-SE extension (Figs.
226 5B, 6).

227  Samples VOC-23-12a and VOC-23-12b exhibit distinct deformation patterns. While sample
228  VOC-23-12a corresponds to calcite veins consistent with WNW-ESE extension, sample VOC-
229  23-12b exhibits similar calcite veins, as well as additional strike-slip deformation, as reported
230  on the stereogram. This reflects WNW-ESE compression and NNE-SSW extension (Fig. 6),
231 which is not significantly different from our result in sample VOC-23-09a and b site. The
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232 geometry of the stress axes, when considered alongside the dip and orientation of the bedding
233 suggests that this state of stress occurred after folding.

234  Sample VOC-23-13 site shows strike-slip faults that are consistent with an E-W-directed
235  extension and N-S-directed compression (Figs. 5C,6). Sample VOC-23-14a represents a calcite
236  vein associated with sample VOC-23-14b, which exhibits a strike-slip fault with a sinistral
237  component. Paleostress reconstruction indicates a WNW-ESE extension and NNE-SSW
238  compression (Fig. 6).

239  Sample VOC-23-16d shows calcite veins affected by strike-slip deformation. In contrast,
240 sample VOC-23-12b only shows strike-slip deformation (post-vein) on the stereogram.
241  Paleostress calculation indicates an NW-SE-directed extension (Fig. 6). Samples BON-23-01a
242  and BON-23-01b correspond to a striated calcite that has been affected by layer-parallel
243  shortening (LPS). This is interpreted as representing flexural slip during folding (Lacombe et
244 al., 2021) (Figs. 5A, 6). Sample BON-23-01c is a calcite vein that formed within the same fold
245  as the previous samples. It is interpreted to have formed during the growth of the fold.
246  Paleostress analysis of the Bonneval outcrop indicates N20°E compression associated with the
247  formation of the N110°E fold (Figs. 5A, 6). Finally, the GLAN-23-02 sample outcrop exhibits
248  anormal fault coherent with a NE-SW extension direction.

249

250 4.2 Petrography of calcite samples

251  Insummary, 15 samples were dated in this study: 6 veins (samples VOC-23-01a, 01b, 09b, 123,
252  14band BON-23-03) and 9 fault planes with striations (samples VOC-23-9a, 11a, 12b, 13, 14a,
253  16d, BON-23-01, 02 and GLAN-23-02). Most samples exhibit millimetric to centimetric
254  blocky or elongate-blocky calcite (Fig. 5) (samples VOC-23-01, 9a, 12a, 22b, 13a, 14a, BON-
255  23-01, 02, 03 and GLAN-23-02). They are characterized by homogeneous luminescence,
256 indicating no evidence of multi-phase calcite growth (Figs. 7A, B). Two samples exhibit
257  different calcite morphologies. Sample VOC-23-11a contains a centimetric calcite with a
258 transitional morphology between syntaxial and stretching (Figs. 7C, D). This suggests the
259  presence of crystals with variable growth planes within the fault plane, indicating potential
260  multiple crack-seal events. Similarly, sample VOC-23-16d displays millimetric to centimetric
261  calcite, predominantly composed of blocky calcite, which appears to be crosscut by a more
262  elongated and stretched second calcite generation (Fig. 7C, D).

263

264 4.3 Calcite U-Pb geochronology
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265  This study presents 16 new calcite U-Pb ages from eight types of brittle structures (Table 1;
266  Figs. 8, 9, 10). The Tera-Wasserburg diagrams show data well spread along the discordia line.
267  The Mean Squared Weighted Deviation (MSWD) ranges from 1.1 to 1.9, which is consistent
268  with well-resolved age estimates. Three distinct age groups can be identified from this dataset.
269  The first age group corresponds to the Late Cretaceous to Early Eocene periods from veins
270  collected in late Jurassic-Early Cretaceous strata in the West. Ages obtained in the “Dentelles
271 de Montmirail” area are of 82.9 + 3.8 Ma (sample VOC-23-01b) and 76.5 + 3.4 Ma (sample
272 VOC-23-01a). To the North of the study area, in the Die region, corresponding fold structures
273  associated with N20°E shortening are dated to 72.0 £ 3.7 Ma (sample BON-23-01a), 71.2 £ 8.1
274  Ma (sample BON-23-01b), and 50.0 £ 4.3 Ma (sample BON-23-01c) (Fig. 8).

275  The second age group corresponds to veins and faults dated back to the Oligocene. Obtained
276  ages range from 34.3 + 1.5 Ma (vein: VOC.23.14a), 30.3 + 1.5 Ma (fault: VOC.23.14b2), 30.0
277 + 2.8 Ma (fault: VOC.23.13b), 28.1 + 1.2 Ma (fault: VOC.23.14b1), 25.6 + 1.3 Ma (vein:
278 VO0C.23.12a), 23.2 + 1.3 Ma (deformed vein: VOC.23.12a and b) and 27.6 + 5.4 Ma (fault:
279  GLAN.23.02) (Fig. 9). Most of these fractures correspond to NW-SE to NE-SW extension (Fig.
280  6). One of them, sample VOC.23.12b, which is the same kind of veins as VOC.23.12a, is
281  consistent with a strike-slip regime with NNE-SSW extension and WNW-ESE compression
282  similar to sample VOC.23.09 (Fig. 6).

283  The third age group corresponds to Miocene veins and strike-slip faults collected in Upper
284  Jurassic-lower Cretaceous carbonates. Two subgroups can be distinguished. The first subgroup,
285  characterized by ages of 12.2 + 3.2 Ma and 12.5 + 5.2 Ma (fault: VOC.23.11a and fault:
286  VOC.23.16d), is associated with a strike-slip regime consistent with NE-SW compression and
287  NW-SE extension (Figs. 10, 6). The second subgroup, defined by ages of 7.8 + 0.6 Ma and 7.0
288  + 2.2 Ma (fault: VOC.23.09a and vein: VOC.23.09b) also corresponds to a strike-slip regime
289  but corresponds to NW-SE compression and NE-SW extension (Figs. 10, 6).

290

291 4.5 RSCM thermometry

292  RSCM data from the first set of Upper Jurassic and Lower Cretaceous carbonates in the central
293  and southern parts of the studied area indicate that temperatures did not exceed 100°C (samples
294  VOC-23-01 and VOC-23-16; Table 2). For the second set of samples, temperatures were
295  successfully determined for 12 samples using an appropriate calibration (Table 2, Fig. 6), which
296  can be divided in two subgroups. Temperatures measured in Lower to Upper Jurassic strata
297  sampled near Saint Roman and Montmaure in the Die area display the lowest temperatures
298  ranging between 100 and 180°C (samples VOC-18-17, VOC-18-18), near Veynes and close to

9
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299  the Devoluy massif (sample VOC-18-20), Sigoyer village (samples VOC-18-21, VOC-18-22),
300 and in the upper stratigraphic unit of the Authon-Valavoire nappe (sample VOC-18-28), in the
301  eastern of the basin, below this nappe (sample VOC-18-29). The higher bound of RSCM
302  temperatures at 170°C is measured for samples VOC-18-24a and 33 located near diapiric
303  structures: “Rocher de Hongrie” (Célini et al., 2024). The latter values are consistent with
304  temperatures between 140 and 200°C recently published in the vicinity of this diapir (Célini et
305 al., 2024). The second subgroup defined by temperatures between 215 and 275°C are found 1
306 km to the south of Sigoyer (sample VOC-18-23), in the middle Jurassic layers in the
307  hangingwall of the Authon-Valavoire nappe (sample VOC-18-25) and in the Lias strata near
308 the Astoin diapir (VOC-18-31). Temperatures of this second subgroup fall within the
309 temperature range recorded in the Authon-Valavoire nappe, closer to the Digne nappe, near
310  Astoin (Célini et al., 2024). To summarize, our data reveal a thermal contrast between the
311  western and eastern domains of the Vocontian basin. While the organic matter of upper
312  Jurassic-lower Cretaceous formations is thermally immature, deeper Early-Middle-Late
313  Jurassic formations exposed in the eastern part of the Vocontian basin, close to the Authon-
314  Vallavoire and Digne nappes show significantly higher thermal maturity with RSCM
315  temperatures exceeding 180°C and reaching up to 275°C. The shift towards higher RSCM
316  temperatures between the Upper Jurassic-Early Cretaceous and deeper stratigraphic units of the
317  Early-Middle Jurassic has also been observed in stratigraphic columns analysed from the Digne
318  Nappe (Célini et al., 2022; Balansa et al., 2023).

319

320 4.4 Burial histories and temperatures reached in the basin

321  Burial histories for the Vocontian Basin are presented in Figure 11. Each curve represents burial
322  evolution calculated from a synthesis of stratigraphic thicknesses inferred from the BRGM
323  1/50.000 geological maps covering the basin. A first observation is that the total sediment
324 accumulation in the VVocontian basin appears to have reached a maximum of 6-7 km since the
325  Early Jurassic. This is shown by the decompacted thicknesses of 6800 m in the Die region, or
326 5900 m in Nyons, in the northern and western parts of the basin, respectively. In regions of the
327  basin where the lower Jurassic series are not exposed the total subsidence is obviously lower;
328 itis only 2500 m in the region of Vaison-la-Romaine. Despite these differences, most regions
329  recorded a main phase of burial during the Middle Jurassic, in the Callovian, about 160 Ma
330 (Fig. 11). This phase affected the entire Vocontian Basin. It is shown by the deposition of marl
331  to shale deposits of the “Terres Noires” facies characteristic of the External Alps. During this

332  period about 2 km of “Terres Noires” were deposited (accumulation of 200-400 m/Myr). After
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333  the Middle Jurassic, the burial slowed down but continued throughout the Late Jurassic and
334  Early Cretaceous. A second phase of accelerated subsidence took place during the Early
335  Cretaceous, around 130 Ma, in the Hauterivian. It is documented in the Mens section by the
336  deposition of about 700 m of marls and limestones (Fig. 4). A third main phase of burial is
337  recorded around 100-90 Ma (Fig. 11) in 6 out 10 stratigraphic sections. It is characterized by
338 increasing siliciclastic influx revealed by the deposition of sandstones alternating with marls
339  and limestones with a thickness of about 700-800 m (e.g., Nyons, Sédéron, Vaison-la-Romaine)
340  (Fig. 10). The Gap, Laragne-Montéglin, and Mens sections, however, record erosion rather than
341  sedimentation at this time. These depositional patterns reveal both uplift in the source regions
342  and structural compartmentalization in the Vocontian basin (Fig. 11). A last episode of
343  subsidence of maximum 350-500 m (e.g., Die, Laragne) is documented during the Eocene-
344  Oligocene (Fig. 11).

345

346 5. Discussion

347 5.1 The Vocontian basin at the time of Mesozoic rifting: E-W trend in thermal gradients
348 and low Ca-rich fluid circulation

349  The Vocontian basin recorded a prolonged phase of subsidence during the Jurassic and
350  Cretaceous (Fig. 11), which is however not associated with a distinct fluid event. This period
351  coincides with the rifting of the European paleomargin as inferred by the thermal evolution of
352 the Variscan crystalline basement of the Pelvoux massif (Boschetti et al., 2025) to the North,
353  and burial history below the Digne Nappe (Célini et al., 2023), which bounds the Vocontian to
354  the east. This latter Eastern rim of the basin was likely inverted during the late stages of the
355  Alpine collision between 12 and 6 Ma (Schwartz et al., 2017). We distinguish a first major
356  phase of sedimentary burial that occurred during the Callovian-Oxfordian, between 170 and
357 160 Ma. It postdates the necking of the European paleomargin as identified in the External
358  Crystalline Massifs (Mohn et al., 2014; Ribes et al., 2020; Dall’Asta et al., 2022) and is
359  synchronous with the opening of the Alpine Tethys (Lemoine, 1987; Manatschal and Muntener,
360  2009). It is recognized in the Vocontian basin, where it is expressed by WNW-ESE extension
361  across the entire basin (Dardeau et al., 1988; Homberg et al., 2013), but it is not recorded in our
362  calcite U-Pb ages. Similar observations can be made for the subsequent extensional Cretaceous
363  event at around 135 Ma, for which no fault of that age is reported. The high temperature
364  measured in the Vocontian basin of the Digne Nappe at this time are interpreted to reflect
365  renewed extension in the basin as the Valaisan domain opened along the European margin

366  (Célini et al., 2023), consistent with continuous burial heating recorded in the Pelvoux massif
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367  (Boschetti et al, 2025). This new peak in sedimentation is consistent with a shift from the
368  Middle Jurassic WNW-ESE extension to NNE-SSW extensional regime during the Barremian
369  to Aptian interval (Dardeau, 1988; de Graciansky and Lemoine, 1988; Homberg et al., 2010).
370  This later extensional event is recorded not only throughout the Vocontian Basin (Homberg et
371  al., 2013), but also along its margins. Evidence includes deformation along the Ventoux—Lure
372  fault zone (Beaudoin et al., 1986; Huang et al., 1988), the development of large-scale sliding
373 domains on the Vercors platform (Biévre and Quesne, 2004), and subsidence in E-W-oriented
374  domains along the Ardeche margin during the same period (Cotillon et al., 1979). Our RSCM
375 analyses show an increase of peak temperatures towards the East of the Vocontian where deeper
376  Lower Jurassic stratigraphic series are exposed (Fig. 6; Table 2). When compared to burial
377  temperature estimates ranging from normal (30°C/km) to high (60°C/km) geothermal gradients,
378  we infer that our RSCM data reveal high to extreme gradients in the East, that is, in the direction
379  of increasing crustal thinning in the Vocontian-Valaisan rift segment (Fig. 6; Table 2). Note
380 that the sharp increase in the geothermal gradients is not necessarily entirely related to crustal
381  thinning but also largely a response of mantle thinning and asthenosphere uprising. The lack of
382  calcite mineralisation at this age in brittle tectonic features is intriguing. Indeed, evidence of
383  mineralization of barite, authigenic quartz and pyrite in the Callovian-Oxfordian shales in the
384  deeper part of the basin is interpreted as reflecting basal fluid flow during peak burial in the
385  Middle Cretaceous, as well as brines related to salt diapirs (Guilhaumou et al., 1996). We
386  suggest that the absence of Middle Cretaceous calcites can reflect the fact that 1) faulting
387  occurred at a depth too shallow for calcite precipitation and/or 2) subsequent burial to depth of
388  2-3km, in the East, led to the dissolution of previous Middle Cretaceous calcites in response to
389  changing physical conditions (e.g., pH, temperature). In addition, mechanical decoupling in the
390  Triassic salt layer during extension may have resulted in the localization of fluid flow and
391  deformation at the base of the basin.

392  Athird depositional phase occurred around 100-90 Ma, in agreement with syn-faulting deposits
393 along the Clausis and Glandage fault systems in the Vocontian/Dévoluy basin (Fig. 11, 3)
394  (Gidonetal., 1970; Arnaud et al., 1974) and strike-slip motions along the Toulourenc faults in
395  the Ventoux-Lure massif (Montenat et al., 2004). On a broader scale, this tectonic phase
396  coincides with strike-slip movements along the Cevennes, Nimes and Durance faults (Montenat
397 etal., 2004; Parizot et al., 2022), possibly associated with local compression related to diapiric
398  movement at 95-90 Ma (Bilau et al., 2023) and normal faulting reported in Provence (Zeboudj
399 et al., 2025). This episode is a response of the continental rifting between Iberia-Ebro and

400 European plates, and the formation of the Pyrenean rift system (Angrand and Mouthereau,
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401  2021) (Fig. 12A). Strike-slip movements along inherited faults (Cevennes, Nimes, Durance
402  faults) were associated with oblique extension accommodated by overlapping rift segments in
403  the Pyrenean and Vocontian basins (Fig. 12). This complex tectonic setting likely triggered the
404  emergence of continental blocks that can explain the abundance of sandstone deposits during
405  this period in the Vocontian basin (Fig. 4, 11). This interpretation aligns with the documented
406  formation of an uplifted structure in Provence during the Albian-Cenomanian, known as the
407  Durancian Isthmus (Combes, 1990; Guyonnet-Benaize et al., 2010; Chanvry et al., 2020,
408 Marchand et al., 2021). Cooling and exhumation in the Massif Central to the west are also
409  documented from 120-90 Ma (Olivetti et al., 2016), which may have contributed to feeding of
410 the Vocontian basin during this period (Fig. 12A). It should be reminded that the locally
411  complex tectonic evolution of SE France during the Middle-Late Cretaceous is a response to
412  large-scale differential movements between Iberia-Ebro and Adria that accommodated both
413  extension in the Pyrenees-Provence rift and contraction in the Alps (e.g., Le Breton et al., 2021;
414  Angrand and Mouthereau, 2021; Boschetti et al., 2025, In Press).

415

416 5.2 Post-Mid Cretaceous evolution of the Vocontian basin: U-Pb/calcite dating record of
417 multiple collision and rifting events in the SE basins of France

418  The oldest calcite U-Pb ages of 84.6 + 2.4 Ma and 77.7 £ 2.9 Ma reported in the Jurassic strata
419  forming the wall of the Suzette diapir in the “Dentelles de Montmirail” structure are consistent
420  with the age of the onset of the Pyrenees-Provence collision dated around 84 Ma (Angrand and
421  Mouthereau, 2021; Mouthereau et al., 2014; Mufioz, 1992; Teixell et al., 2018; Ford et al.,
422  2022). Those old calcite ages are likely to be realed to halokinetic movement of Suzette diapir
423  in response to far-field stresses that trigger tectonic inversion and exhumation all over Europe
424  (Mouthereau et al., 2021). These ages can also be related to folding along E-W trending folds
425  in the Dévoluy massif, affecting the Early Cretaceous units and associated to erosional surface
426  dated to Coniacian-Santonian (Fig. 3B) (ca. 85 Ma) (Flandrin, 1966; Lemoine, 1972; Gidon et
427  al., 1970; Arnaud et al., 1974), or the end of diapiric movement during extension in southern
428  Provence (Wicker and Ford, 2021). In the Pyrenees exhumation seems to increase from 75-70
429  Ma (Mouthereau et al., 2014) and this is recorded regionally in SE of France by the cooling of
430  the Pelvoux to the Maures-Tanneron massifs (Fig. 12A) (Boschetti et al., 2025, In Press). This
431  timing is further in line with the earliest surface deformation, which is recorded around 75 Ma
432  (Parizot et al., 2021). U/Pb ages of 72.0 £ 3.7 Ma and 71.2 + 8.1 Ma associated with folding
433  during N20°E compression are consistent with the latest sinistral reactivation of the Cevennes
434  fault from 76 Ma (Parizot et al., 2021). These ages can also be related to folding along E-W
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435  axis in the Dévoluy massif, affecting the Early Cretaceous units and associated to erosional
436  surface estimated to occur during Turonian-Coniacian-Santonian (Fig. 3) (ca. 85 Ma) (Flandrin,
437  1966; Lemoine, 1972; Gidon et al., 1970; Arnaud et al., 1974).

438  Our data resolve another later N20°E contractional stage dated at 50.0 + 4.3 (Fig. 6). It is well
439 identified also in Provence in the U/Pb age dataset (Zeboudj et al., 2025) and correspond to a
440  N-S compressive phase spanning from 59 to 34 Ma. This stage is regarded as the culmination
441  of the Pyrenean-Provencal collision (Bestani et al., 2016; Balansa et al., 2022) (Fig. 12B). This
442  episode is related to the acceleration of collision at ca. 50 Ma caused by dynamic changes in
443  Africa motion, and North Altantic opening (e.g. Mouthereau et al., 2021). In northwestern
444 Europe, the Eocene also announces the onset of opening of the aborted rift system of the West
445  European Rift (WER) (e.g. Séranne et al., 1999; Dézes et al., 2004; Mouthereau et al., 2021).
446  The WER stage is well represented in the VVocontian basin as indicated by eight U/Pb dates
447  ranging from 30.4 + 2.7 t0 24.3 + 1.3 Ma (Fig. 12C), which coincides with an extensional phase
448  (35-23 Ma) also documented in Provence, western Alps, eastern Pyrenees, and Valencia
449  Trough, coeval with the late activities of the West European Rift (Merle and Michon, 2001;
450  Ziegler and Dézes, 2006). In our study region the shallow depth of iso-velocity contour Vs=4.2
451  km.s?, considered to be a proxy for the Moho (Schwartz et al., 2024), confirms a significant
452  crustal thinning in the Valence-Rhone depression (Fig. S1, Supplementary Material 1). It should
453 also be noted that the Late Eocene-Early Oligocene period coincided with the onset of
454 deposition in the flexural basin of the Alpine foreland (Ford et al., 1999). The deflection of the
455  European margin is likely increasing the extensional stresses associated with the WER. From
456  Chattian-Aquitanian times, at ca. 23 Ma, the opening of the Gulf of Lions and of the Ligurian
457  basin (e.g., Séranne et al., 1999; Jolivet et al., 1999, 2020) commenced following the demise of
458  the WER (Mouthereau et al., 2021) (Fig. 12C). The excellent preservation of the Oligocene-
459  Miocene extensional phase suggests positive feedbacks between crustal thinning (Fig. S1,
460  Supplementary Material 1) and physical conditions become favourable to calcite precipitation
461  closer to the surface, as the basin was exhumed during the former Late Cretaceous shortening.
462  The youngest calcite U/Pb ages of 12.2 + 3.2 Ma, 125+ 5.2 Ma, 7.8 £ 0.6 Maand 7.0 + 2.2
463  Ma are associated with NE-SW compression. This result agrees with the westward propagation
464  of the Alpine deformation front, which migrated forelandward from 15 to 7 Ma in the Vercors
465  massif (Bilau et al., 2023) (Fig. 12D). This timing also coincides with the exhumation of Alpine
466  external crystalline massifs, such as the Belledonne and Pelvoux massifs (e.g. Beucher et al.,
467  2012; Girault et al., 2022; Boschetti et al., 2025).

468
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469 CONCLUSION

470  The goal of this study was to provide a refined chronology of deformation in the Vocontian
471 Basin using an integrated approach combining U-Pb calcite geochronology, RSCM
472  thermometry, and subsidence analysis. First, this study highlights the absence of mid-
473  Cretaceous syn-rift calcites associated with the opening of the Vocontian Basin. This is possibly
474 related to dissolution during subsequent burial, or reflect the localization of fluid flow and strain
475  in the basal Triassic salt layer during the mid-Cretaceous extension. The temporal distribution
476  of dated brittle structures reveals three main deformation episodes: (1) Late Cretaceous to
477  Paleocene calcite precipitation associated with Pyrenean-Provencal convergence and diapirism;
478  (2) Oligocene extensional phases tied to the West European Rift opening; and (3) Miocene
479  strike-slip reactivation and contraction linked to the Alpine orogeny. These events are
480  superimposed onto a long-term subsidence history that records major burial phases during the
481  Jurassic and Cretaceous. Thermal data from RSCM analyses delineate a sharp eastward increase
482  in geothermal gradients, suggesting enhanced crustal thinning and/or diapiric activity in the
483  eastern part of the basin. This work highlights the possible mismatch between the tectonic
484  evolution of a region and the tectonic history inferred from calcite U-Pb dating, which is
485  sensible to burial history and the physical conditions required to precipitate syn-deformation
486  calcite.
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Figure 10: U-Pb on calcite dating results from 12 to 7 Ma.
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Figure 11: A) Burial history computed after the synthetic stratigraphic sections shown in Figure 10. B) evolution of sediment
accumulation rate through time. O: Die; 1: Dieulefit; 2: Gap; 3: Laragne-Montéglin; 4: Luc-en-Diois; 5: Mens; 6: Nyons; 7:
Sédéron; 8: Serre; 9: Vaison-la-Romaine. L: lower, mi: middle; u: upper; J: jurassic; C: cretaceous; p: Paleocene; e: Eocene; o:
Oligocene; m: Miocene; pl: Pliocene.
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Figure 12: Regional tectonic and paleogeographical reconstitutions of SE France showing the evolution of the Vocontian
basin since the Middle Cretaceous (modified after Boschetti et al., 2025b). A) Rifting in overlapping Pyrenean-Vocontian rift
segments at 110-90 Ma. B) Pyrenees-Provence collision phase from 75 to 50 Ma. C) Opening of the West European Rift and
onset of Alpine foreland fold and thrust belt tectonics. D) Alpine collision and westward propagation of deformation front.
SC: Corsica-Sardinia; B: Baleares; C: Chartreuse; V: Vercors.
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Table 1: Calcite sample types and correspondinng measurements and ages.

U-Pb  Error
Sample Lat Long Structures n al a2 a3 t]) Ma) (M)
VOC.23.01a 44.159326 5.049163 Vein + Strike slip - - - - - 765 3.4
VOC.23.02b 44.159326 5.049163 Vein - - - - - 829 38

VOC.23.9a 44.190622 5.47628 Strike-slip (Reverse) 13 02/124 80/025 10/214 0.6 7.3 061
VOC.23.9b  44.190622 5.47628 Vein (Associated 9a) 11 73/098 16/291 04/200 0.5 6.75 2.1
VOC.23.11a 44.367914 5.352686 Strike-slip (Post-fold) 6 17/0.23 71/185 05/292 0.5 11.1 36

VOC.23.12a 44.437467 5.293520 Vein - - - - - 256 13
VOC.23.12b  44.437467 5.293520 Vein + Strike slip 17 10/292 78/078 06/201 0.5 232 13
VOC.23.13b 44.417839 5.657694 Normal fault 14 78/069 05/315 10/223 0.5 30 2.8

VOC.23.14a 44.328944 5.631972 Vein (Associated 14b)
VOC.23.14b1 44328944 5631972  Strike-slip (Normal) 17/197 73/007 03/106 0.5 303 15
VOC.23.14b2 44.328944 5631972  Strike-slip (Normal) 17/197 73/007 03/106 0.5 281 1.2
VOC.23.16d 44.575833 5.640667  Strike-slip (Reverse) 20 04/048 86/234 00/138 0.5 13.8 57

- - - - 343 15

a o

BON.23.0l1a 44.62582 5.60985 Plane from fold 11 36/205 04/112 54/017 0.27 72 3.7
BON.23.01  44.62582 5.60985 Plane from fold 11 36/205 04/112 54/017 0.27 712 8.1
BON.23.01  44.62582 5.60985 Vein 11 36/205 04/112 54/017 0.27 50 4.3
GLAN.23.02  44.68617 5.58384 Normal fault 4 62/203 04/300 27/032 0.5 276 34
1129
1130

Table 2: Raman Thermometry data.

Stratigraphic Burial T  Burial T RSCMT

Sample Lat °N Lon °E Age (Ma) Log/Map (30°C/km) (60°Crkm) °C) 1s
VOC.23.02 44 556889 5772778 142 Gap 52 104 <100
V0OC.23.03 44546834 5801242 156 Gap 57 114 <100
VOC.23.05 44354736 5668139 135 Serres 51 102 <100
VOC.23.06 44296138 5.281886 142 Nyons 51 102 <100
VOC.23.07 44299667 5.312604 142 Nyons 51 102 <100
VOC.23.08 44 227526 5433728 137 Sederon 75 150 <100
VOC.23.10 44221778 5429244 142 Sederon 775 155 <100
VOC.23.13 44417889 5657694 124 Serres 345 69 <100
VOC.23.16 44 575833  5.640667 142 Luc-en-Diois 615 123 <100
VOC.24.17 44681803 5414283 167 Mens 122 245 100 20
VOC.24.18 44 698656 5419786 166 Mens 105 211 120 20
VOC.24.20 44 502694 5820133 156 Gap 57 114 100 20
VOC.24.21 44 464336 5697017 157 Luc-en-Diois 69 138 120 20
V0OC.24.22 44316244 5959372 169 Laragne-Monteglin 93 186 120 20
VOC.24.23 44308639 5.956206 166 Laragne-Monteglin 73 147 265 12
VOC.24.24a 44281517 6.014347 163 Laragne-Monteglin 58.5 117 180 20
VOC.24.25 44294617 6.056911 162 Laragne-Monteglin 58.5 117 228 22
VOCY.24.28a 44328152 6.128097 170 Laragne-Monteglin 108 216 140 20
V0OC.24.29 44335796 6.020728 166 Laragne-Monteglin 73 147 140 20
VOC.24.31 44 357159 6.166843 175 Laragne-Monteglin ~ >108 >216 275 6
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