

1 **Polyphase tectonic, thermal and burial history of the Vocontian basin**
2 **revealed by U-Pb calcite dating**

3 Louise Boschetti¹, Malou Pelletier¹, Frédéric Mouthereau^{1,2}, Stephane Schwartz³, Yann
4 Rolland^{3,4}, Guilhem Hoareau⁵, Thierry Dumont³, Dorian Bienveignant³, Abdeltif Lahfid⁶

5 1. Géosciences Environnement Toulouse, Université de Toulouse Paul Sabatier, CNRS,
6 IRD, 14 av. Edouard Belin, 31400 Toulouse, France
7 2. Institut Universitaire de France, F-75005 Paris, France
8 3. ISTerre, Université Grenoble Alpes, USMB, CNRS, IRD, UGE, 38000 Grenoble,
9 France.
10 4. EDYTEM, Université Savoie Mont Blanc, CNRS, UMR 5204, Le Bourget du Lac,
11 France.
12 5. Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, LFCR, UMR5150, Pau,
13 France.
14 6. BRGM, B.P. 6009, 45060 Orléans Cedex, France
15

16 Corresponding author: louise.boschetti@univ-tlse3.fr
17

18 **Abstract**

19 The Vocontian Basin in southeastern France records a long-lived history of subsidence and
20 polyphase deformation at the junction of Alpine and Pyrenean orogenic systems. This study
21 aims to reconstructed the geodynamical evolution of this basin, based on new U–Pb dating of
22 calcite from veins and faults combined with RSCM thermometry and stratigraphy-based burial
23 models. Three main generations of calcites are dated: (1) Late Cretaceous to Paleocene dates
24 related to Pyrenean-Provençal convergence (~84–50 Ma); (2) Oligocene dates linked to the
25 West European Rift extension (~30–24 Ma); and (3) Miocene dates ascribed to strike-slip and
26 compression associated with Alpine collision (~12–7 Ma). No older ages related to the Jurassic
27 and Early Cretaceous rifting phases are obtained suggesting limited syn-rift fluid circulation or
28 subsequent dissolution of early calcite mineralization. RSCM data highlight a pronounced E–
29 W thermal gradient, with peak temperatures exceeding 250°C in the eastern basin, consistent
30 with crustal thinning and/or salt diapirism. These results emphasize the large-scale impact of
31 the opening of the West European Rift in SE France and underscore the possible mismatch

32 between the large-scale tectonics and the tectonic history inferred from calcite U–Pb dating,
33 which is sensible to presence of fluids and the physical conditions for their preservations.

34

35 **1. Introduction**

36 Sedimentary basins located in the external part of orogenic belts can provide critical insights
37 into the polyphase and complex evolution of tectonic plate boundaries. The Vocontian Basin in
38 southeastern France is currently positioned at the front of the southern Alpine belt, to the north
39 of Provence (Fig. 1). This basin recorded a succession of tectonic events spanning from the
40 Late Cretaceous to the Cenozoic (Roure et al., 1992; Homberg et al., 2013; Moutherau et al.,
41 2021) (Fig. 1). These different tectonic events have been attributed to the Mesozoic rifting
42 associated with the opening of the Alpine Tethys and the Atlantic Ocean-Pyrenean rift,
43 Cenozoic inversion of the rifted margins during the development of the Pyrenees-Provence
44 collision and the Eocene-Oligocene to Miocene extension associated with the opening of the
45 West European Rift and the Gulf of Lion (e.g., Stämpfli, 1993; Homberg et al., 2013; Bestani
46 et al., 2016; Espurt et al., 2019; Célini et al., 2023). Some details of the tectonic evolution of
47 the Vocontian basin, positioned at the intersection between the Europe-Iberia and Europe-Adria
48 plate boundaries are however debated. A long-standing debate persists on whether the Mid-
49 Cretaceous Vocontian Basin, north of Provence, is part of a continuous rift system between the
50 Valaisan/Alpine Tethys in the east and the Pyrenean/Atlantic Ocean in the west (Trümpy, 1988;
51 Stämpfli, 1993; Stämpfli and Borel, 2002; Turco et al., 2012). In contrast, other studies suggest
52 that the Vocontian Basin, while belonging to the broader Pyrenean/Atlantic rift system,
53 remained structurally disconnected from other Pyrenean and Provençal rift segments
54 (Debelmas, 2001; Manatschal and Muntener, 2009; Angrand and Moutherau, 2021; Célini et
55 al., 2023; Boschetti et al., 2025). In the latter hypothesis, Provence forms a rather small emerged
56 continental domain between two Cretaceous rift segments.

57 The analyses of Raman Spectroscopy of Carbonaceous Material (RSCM) temperatures from
58 the Digne Nappe, in the eastern part of the Vocontian basin (Fig. 2A), supports a tectonic model
59 in which the Vocontian basin resulted from two superimposed phases of crustal thinning. The
60 first one is dated to the Upper Jurassic and coincides with the Alpine Tethys opening. The
61 second phase, characterised by temperatures in the basin exceeding 300°C, is believed to have
62 occurred during the Lower Cretaceous period, when the Pyrenean rifting led to continental
63 breakup in the Valaisan domain (Célini et al., 2023).

64 Despite the well-established structural and sedimentary constraints on the tectonic evolution of
65 the basin, including clear evidence for syn-depositional normal faulting in the mid-Cretaceous

66 (e.g., Homberg et al., 2013), precise geochronological constraints on the timing of rifting and
67 subsequent inversion are lacking. Resolving this question is critical, as the timing of the end of
68 Cretaceous extension often overlaps with the onset of Pyrenean compression (Bilau et al.,
69 2023). Furthermore, it is unclear whether this part of the Alpine foreland experienced the same
70 extension associated as the West European Rift, as seen in the Valence and Manosque basins
71 (e.g., Ford and Lickorish, 2004).

72 This study addresses these questions through an approach combining U-Pb dating of calcite in
73 faults and veins complemented with new RSCM thermochronology and analysis of the burial
74 history of the Vocontian basin. We aim to clarify the interactions between the different tectonic
75 systems that developed in SE France by establishing a robust chronological framework. Our
76 findings have significant implications for our understanding of polyphase deformation at the
77 Europe-Iberia-Adria plate boundary.

78

79 **2. Geological setting**

80 Positioned at the front of the Western Alps, the Vocontian Basin is part of the Southern
81 Subalpine belt produced by the interactions between the Pyrenean-Provençal belt to the south
82 and the Alpine belt to the east (Philippe et al., 1998; Balansa et al., 2022; Célini et al., 2024;
83 Fig. 1). It includes the Diois-Baronnies region, and it is bordered by the Rhône Valley and the
84 Massif Central basement to the west, the External Crystalline Massif of Pelvoux to the east, the
85 Vercors Massif to the north, and the Provençal Platform to the south (Figs. 1, 2A).

86 The Vocontian Basin is filled by approximately 2,600 m thick succession of mostly Mesozoic
87 deposits along its margins reaching a thickness of up to 7,000 m in its center (Fig. 2B).

88 The base of the folded stratigraphic sequence is made of upper Triassic evaporites which have
89 led to the development of salt diapirs piercing the sedimentary cover (Suzette, Propiac diapirs),
90 or controlling certain features of the basin including thickness variations (Fig. 3A) (Célini, 2020
91 and references therein).

92 The subsidence at the origin of the basin initiated with the opening of the Alpine Tethys to the
93 east during the Early to Middle Jurassic. This period is marked by the deposition of alternating
94 shallow marine limestones and marls, followed by deepening marine environments culminating
95 with the deposition of organic-rich black shales of the “Terres Noires” formation during the
96 Bathonian–Oxfordian (Fig. 2). In the Late Jurassic, the basin underwent NNE–SSW-directed
97 extension, as recorded by syn-sedimentary NW–SSE-trending normal faults (Homberg et al.,
98 2013). This extensional regime, consistent with the propagation of the Alpine Tethys, led to the
99 deposition of fine-grained bioclastic Tithonian Limestones, which form a distinctive

100 morphostructural marker and reflect slower subsidence (Remane, 1970; Joseph et al., 1988).
101 The subsidence continued throughout the Early Cretaceous (Valanginian-Aptian) period,
102 during which alternating layers of marls and limestones were deposited, shaping the “Vocontian
103 facies”. These deeper marine deposits contrast with the shallow-water carbonates of the Vercors
104 platform to the north, known as the "Urgonian facies" (Fig. 2A).
105 A major shift in tectonic regime occurred during the Aptian–Albian, marked by increased
106 subsidence and the deposition of thick marly sequences ("Blue Marls"; Debrand-Passard et al.,
107 1988) (Fig. 2B). This phase is associated with the development of E–W-trending normal faults,
108 suggesting a reorientation of the extensional stress field from NNE–SSW (Late Jurassic) to
109 WNW–ESE (Homberg et al., 2013). This shift is interpreted to reflect plate tectonic
110 reorganization, linked to the onset of Europe–Iberia divergence (Bay of Biscay opening) and
111 the closure of the Alpine Tethys through Europe-Adria convergence (Lemoine et al., 1987;
112 Stämpfli, 1993).
113 During the Late Cretaceous, sandstones were deposited in the west whereas limestones
114 predominated in the east of the basin (Fig. 2). At the current location of the Dévoluy massif, in
115 the north-eastern part of the basin, a stratigraphic hiatus of the Turonian, Coniacian to the
116 Santonian (Fig. 3B) is documented, regionally referred to as the Turonian unconformity. It is
117 marked by the argillaceous to sublithographic limestones of the lower Cretaceous and E–W
118 trending folds which are in direct contact, below an erosional surface, with bioclastic and
119 terrigenous deposits of the Campanian-Maastrichtian (Fig. 2-3B; Gidon et al., 1970; Arnaud et
120 al., 1974). In the entire Vocontian basin the main stratigraphic hiatus corresponds to Paleocene-
121 Early Eocene (Fig. 2B). This late Cretaceous-Paleocene is coeval with the onset of Iberia-
122 Europe convergence, marking the initial stages of the Pyrenean-Provençal orogeny from ~84
123 Ma (Angrand and Mouthereau, 2021; Mouthereau et al., 2014; Muñoz, 1992; Teixell et al.,
124 2018; Ford et al., 2022). These deformations are consistent with the exhumation at ~85 Ma of
125 the Pelvoux crystalline basement to the northeast (Fig. 2; Boschetti et al., 2025).
126 After this tectonic change, only limited and localized marine incursions occurred from the Late
127 Eocene to the Miocene (Fig. 2B). This period corresponds to the early Alpine collision, which
128 affected the internal domains and the eastern parts of the External Crystalline Massifs.
129 Meanwhile, regional-scale extension developed in the European plate due to the evolution of
130 the Western European Rift system and the opening of the Liguro–Provençal back-arc basin in
131 southeastern France (Fig. 1) (Hippolyte et al., 1993; Séranne et al., 2021; Jolivet et al., 2021).

132 In the eastern part of the basin, the latest compressional phase is recorded by N–S to NW–SE-
133 trending structures associated with the Digne thrust (Fig. 1-2) and final Alpine exhumation
134 between ~12 and 6 Ma (Schwartz et al., 2017).

135

136 **3. Sampling and methods**

137 **3.1 Sampling strategy**

138 The sampling sites were carefully selected to characterize both the nature and ages of the brittle
139 deformation that affected the Jurassic and Cretaceous formations within the Vocontian basin
140 (Fig. 2A). The main structures were first identified based on the work of Homberg et al. (2013),
141 who described syn-extensional features in the Vocontian Basin that were formed "shortly after"
142 sediment deposition. We used the 1:50.000 scale geological maps from Die to Sisteron to select
143 our sampling targets.

144

145 **3.2 Tectonic and paleostress analysis**

146 To reconstruct the tectonic evolution of brittle deformation in the Vocontian Basin, fault-slip
147 data and other stress indicators like calcite veins, were measured in the field and collected for
148 U-Pb dating. Local stress states were inferred by inverting fault slip data using the methodology
149 outlined by Angelier (1990), implemented in the Win-Tensor software (Delvaux and Sperner,
150 2003). This analysis provided the orientation of the three principal stress axes (σ_1 , σ_2 , and σ_3)
151 and the shape of the stress ellipsoids defined by the ratio $\phi = \frac{\sigma_2 - \sigma_3}{\sigma_1 - \sigma_3}$, reflecting the relative
152 magnitudes of the principal stresses. Relative chronology between the reconstructed stress
153 tensors was achieved through cross-cutting relationships between generations of veins and
154 faults (normal, reverse, or strike-slip faults). Chronology with respect to folding was further
155 refined by comparing the orientation of faults, veins, and/or associated stress states in their
156 present-day configuration and after unfolding. This approach assumes that faults were
157 neofomed according to an Andersonian state of stress, with one principal stress axis being
158 vertical.

159

160 **3.3 Calcite U-Pb geochronology**

161 Prior to U-Pb analyses, each polished thick section was petrographically characterized at IPRA
162 (Institut Pluridisciplinaire de Recherche Appliquée) in Pau, France. This characterization
163 involved the use of an optical microscope coupled with cathodoluminescence (CL) imaging to
164 identify multiple calcite generations. CL images were acquired using an OPEA Cathodyne

165 system coupled with a Nikon BH2 microscope, operating at an acceleration voltage of 12.5 kV
166 and an intensity of 300–500 mA. The U-Pb absolute dating of calcite was performed at IPREM
167 (Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux)
168 laboratory, following the analytical approach described by Hoareau et al. (2021). This method
169 employs isotopic mapping of U, Pb, and Th via a continuous ablation process, combined with
170 a virtual spot method to construct Tera-Wasserburg (TW) plots (Hoareau et al., 2021, 2024). A
171 comprehensive description of the analytical procedure and data processing is provided in the
172 Supplementary Material 1 (Tab. A1, Tab. A2). The analytical setup included a 257 nm
173 femtosecond laser ablation system (Lambda3, Nexeya, Bordeaux, France), operating at a
174 frequency of 500 Hz with a spot size of 15 μm . Ablation was conducted in a controlled
175 atmosphere composed of helium (600 mL/min) and nitrogen (10 mL/min), which was
176 subsequently mixed with argon in the ICPMS. This system was coupled to an HR-ICPMS
177 Element XR (ThermoFisher Scientific, Bremen, Germany) equipped with a jet interface
178 (Donard et al., 2015).

179

180 **3.4 Burial history**

181 The subsidence history of the Vocontian Basin was reconstructed using stratigraphic sections
182 including thicknesses and lithologies, from the 1:50.000 scale geological maps of Die, Mens,
183 Dieulefit, Luc-en-Diois, Gap, Nyons, Serres, Laragne-Montéglise, Vaison-la-Romaine, and
184 Séderon, providing basin-wide coverage (Fig. 4). Standard backstripping techniques (Allen and
185 Allen 2013) were applied for this analysis. The sedimentary units were first decompacted using
186 a coefficient corresponding to the main lithology (limestone, marl or clay) and stratigraphic
187 ages inferred from the geological maps. To enable comparison between the different
188 sedimentary columns, the stratigraphic columns were resampled at regular temporal intervals,
189 every 1 Myr, grouped into bins of 5 Myr and finally interpolated using the 2D spline method.

190

191 **3.5 RSCM thermometry approach**

192 To determine the peak temperatures reached by sediments and metasediments in the Vocontian
193 basin, we conducted RSCM analyses on an initial set of rock samples collected from Middle to
194 Upper Jurassic and Lower Cretaceous carbonates close to U-Pb dated calcites (Fig. 2A, 4). For
195 comparison, this set was complemented by a second set of samples further eastwards in, or near,
196 the Authon-Valavoire thrust nappe (below the Digne nappe) where deeper Lower Jurassic strata
197 of the Vocontian are exposed and diapirism has been described (e.g., Célini et al., 2024). The
198 RSCM approach is used to understand thermal processes ranging from advanced diagenesis to

199 high-grade metamorphism, covering temperatures from 100 to 650°C (e.g., Ayoa et al., 2010;
200 Koukestu et al., 2014; Schito et al., 2017). Depending on the temperature range and the
201 geological context, different calibrations are proposed. In this study, we applied the calibration
202 of Lahfid et al. (2010) for temperatures ranging between 200 and 340°C, and the qualitative
203 approach proposed in Saspiturry et al. (2020) for lower temperatures between 100 and 200°C.
204 The analyses were performed at the Bureau de Recherches Géologiques et Minières (BRGM;
205 Orléans, France). The Raman spectra were obtained with a Horiba LABRAM HR instrument
206 with a 514.5 nm solid-state laser source for excitation. The laser is focused on the samples with
207 a BxFM microscope using a $\times 100$ objective with a numerical aperture of 0.90 and under 0.1
208 mW on the sample surface.

209

210 4. Results

211 4.1 Microtectonics and paleostress reconstructions

212 Veins and striated planes associated with folds (Fig. 5A), reverse faults (Fig. 5B) and normal
213 faults (Fig. 5C) were measured and sampled. Stereodiagrams of beddings, fault-slip data, veins
214 and, when necessary, their associated back-tilting state of stress, are presented in Figure 6.
215 When the number of fault-slip data was sufficient for inversion (a minimum of four is required),
216 the calculated stress axes have been reported (Fig. 6; Table 1). In this section we first present
217 data from samples VOC-23-09a to VOC-23-16d (in numerical order) and then introduces
218 samples BON-23-01, 02, and 03, along with GLAN-23-02, which belong to a second and
219 separate field campaign. No measurements were conducted for sample VOC-23-01a and VOC-
220 23-01b, as the sampling area is located within a diapiric structure of the Dentelles de Montmirail
221 (Figs. 2A, 6), preventing a reliable interpretation of the paleostress tensor.

222 The sampling area of sample VOC-23-09b shows a majority of strike-slip faults, for which
223 paleostress inversion reveals a strike-slip regime resolving a NW-SE-directed compression
224 (Fig. 6). At site of sample VOC-23-11a bedding is flat. We resolve a strike-slip regime with
225 paleostress reconstructions that indicate a NE-SW compression and NW-SE extension (Figs.
226 5B, 6).

227 Samples VOC-23-12a and VOC-23-12b exhibit distinct deformation patterns. While sample
228 VOC-23-12a corresponds to calcite veins consistent with WNW-ESE extension, sample VOC-
229 23-12b exhibits similar calcite veins, as well as additional strike-slip deformation, as reported
230 on the stereogram. This reflects WNW-ESE compression and NNE-SSW extension (Fig. 6),
231 which is not significantly different from our result in sample VOC-23-09a and b site. The

232 geometry of the stress axes, when considered alongside the dip and orientation of the bedding
233 suggests that this state of stress occurred after folding.

234 Sample VOC-23-13 site shows strike-slip faults that are consistent with an E-W-directed
235 extension and N-S-directed compression (Figs. 5C,6). Sample VOC-23-14a represents a calcite
236 vein associated with sample VOC-23-14b, which exhibits a strike-slip fault with a sinistral
237 component. Paleostress reconstruction indicates a WNW-ESE extension and NNE-SSW
238 compression (Fig. 6).

239 Sample VOC-23-16d shows calcite veins affected by strike-slip deformation. In contrast,
240 sample VOC-23-12b only shows strike-slip deformation (post-vein) on the stereogram.
241 Paleostress calculation indicates an NW-SE-directed extension (Fig. 6). Samples BON-23-01a
242 and BON-23-01b correspond to a striated calcite that has been affected by layer-parallel
243 shortening (LPS). This is interpreted as representing flexural slip during folding (Lacombe et
244 al., 2021) (Figs. 5A, 6). Sample BON-23-01c is a calcite vein that formed within the same fold
245 as the previous samples. It is interpreted to have formed during the growth of the fold.
246 Paleostress analysis of the Bonneval outcrop indicates N20°E compression associated with the
247 formation of the N110°E fold (Figs. 5A, 6). Finally, the GLAN-23-02 sample outcrop exhibits
248 a normal fault coherent with a NE-SW extension direction.

249

250 **4.2 Petrography of calcite samples**

251 In summary, 15 samples were dated in this study: 6 veins (samples VOC-23-01a, 01b, 09b, 12a,
252 14b and BON-23-03) and 9 fault planes with striations (samples VOC-23-9a, 11a, 12b, 13, 14a,
253 16d, BON-23-01, 02 and GLAN-23-02). Most samples exhibit millimetric to centimetric
254 blocky or elongate-blocky calcite (Fig. 5) (samples VOC-23-01, 9a, 12a, 22b, 13a, 14a, BON-
255 23-01, 02, 03 and GLAN-23-02). They are characterized by homogeneous luminescence,
256 indicating no evidence of multi-phase calcite growth (Figs. 7A, B). Two samples exhibit
257 different calcite morphologies. Sample VOC-23-11a contains a centimetric calcite with a
258 transitional morphology between syntaxial and stretching (Figs. 7C, D). This suggests the
259 presence of crystals with variable growth planes within the fault plane, indicating potential
260 multiple crack-seal events. Similarly, sample VOC-23-16d displays millimetric to centimetric
261 calcite, predominantly composed of blocky calcite, which appears to be crosscut by a more
262 elongated and stretched second calcite generation (Fig. 7C, D).

263

264 **4.3 Calcite U-Pb geochronology**

265 This study presents 16 new calcite U-Pb ages from eight types of brittle structures (Table 1;
266 Figs. 8, 9, 10). The Tera-Wasserburg diagrams show data well spread along the discordia line.
267 The Mean Squared Weighted Deviation (MSWD) ranges from 1.1 to 1.9, which is consistent
268 with well-resolved age estimates. Three distinct age groups can be identified from this dataset.
269 The first age group corresponds to the Late Cretaceous to Early Eocene periods from veins
270 collected in late Jurassic-Early Cretaceous strata in the West. Ages obtained in the “Dentelles
271 de Montmirail” area are of 82.9 ± 3.8 Ma (sample VOC-23-01b) and 76.5 ± 3.4 Ma (sample
272 VOC-23-01a). To the North of the study area, in the Die region, corresponding fold structures
273 associated with N20°E shortening are dated to 72.0 ± 3.7 Ma (sample BON-23-01a), 71.2 ± 8.1
274 Ma (sample BON-23-01b), and 50.0 ± 4.3 Ma (sample BON-23-01c) (Fig. 8).
275 The second age group corresponds to veins and faults dated back to the Oligocene. Obtained
276 ages range from 34.3 ± 1.5 Ma (vein: VOC.23.14a), 30.3 ± 1.5 Ma (fault: VOC.23.14b2), 30.0
277 ± 2.8 Ma (fault: VOC.23.13b), 28.1 ± 1.2 Ma (fault: VOC.23.14b1), 25.6 ± 1.3 Ma (vein:
278 VOC.23.12a), 23.2 ± 1.3 Ma (deformed vein: VOC.23.12a and b) and 27.6 ± 5.4 Ma (fault:
279 GLAN.23.02) (Fig. 9). Most of these fractures correspond to NW-SE to NE-SW extension (Fig.
280 6). One of them, sample VOC.23.12b, which is the same kind of veins as VOC.23.12a, is
281 consistent with a strike-slip regime with NNE-SSW extension and WNW-ESE compression
282 similar to sample VOC.23.09 (Fig. 6).
283 The third age group corresponds to Miocene veins and strike-slip faults collected in Upper
284 Jurassic-lower Cretaceous carbonates. Two subgroups can be distinguished. The first subgroup,
285 characterized by ages of 12.2 ± 3.2 Ma and 12.5 ± 5.2 Ma (fault: VOC.23.11a and fault:
286 VOC.23.16d), is associated with a strike-slip regime consistent with NE-SW compression and
287 NW-SE extension (Figs. 10, 6). The second subgroup, defined by ages of 7.8 ± 0.6 Ma and 7.0
288 ± 2.2 Ma (fault: VOC.23.09a and vein: VOC.23.09b) also corresponds to a strike-slip regime
289 but corresponds to NW-SE compression and NE-SW extension (Figs. 10, 6).
290

291 **4.5 RSCM thermometry**

292 RSCM data from the first set of Upper Jurassic and Lower Cretaceous carbonates in the central
293 and southern parts of the studied area indicate that temperatures did not exceed 100°C (samples
294 VOC-23-01 and VOC-23-16; Table 2). For the second set of samples, temperatures were
295 successfully determined for 12 samples using an appropriate calibration (Table 2, Fig. 6), which
296 can be divided in two subgroups. Temperatures measured in Lower to Upper Jurassic strata
297 sampled near Saint Roman and Montmaure in the Die area display the lowest temperatures
298 ranging between 100 and 180°C (samples VOC-18-17, VOC-18-18), near Veynes and close to

299 the Devoluy massif (sample VOC-18-20), Sigoyer village (samples VOC-18-21, VOC-18-22),
300 and in the upper stratigraphic unit of the Authon-Valavoire nappe (sample VOC-18-28), in the
301 eastern of the basin, below this nappe (sample VOC-18-29). The higher bound of RSCM
302 temperatures at 170°C is measured for samples VOC-18-24a and 33 located near diapiric
303 structures: “Rocher de Hongrie” (Célini et al., 2024). The latter values are consistent with
304 temperatures between 140 and 200°C recently published in the vicinity of this diapir (Célini et
305 al., 2024). The second subgroup defined by temperatures between 215 and 275°C are found 1
306 km to the south of Sigoyer (sample VOC-18-23), in the middle Jurassic layers in the
307 hangingwall of the Authon-Valavoire nappe (sample VOC-18-25) and in the Lias strata near
308 the Astoin diapir (VOC-18-31). Temperatures of this second subgroup fall within the
309 temperature range recorded in the Authon-Valavoire nappe, closer to the Digne nappe, near
310 Astoin (Célini et al., 2024). To summarize, our data reveal a thermal contrast between the
311 western and eastern domains of the Vocontian basin. While the organic matter of upper
312 Jurassic-lower Cretaceous formations is thermally immature, deeper Early-Middle-Late
313 Jurassic formations exposed in the eastern part of the Vocontian basin, close to the Authon-
314 Vallavoire and Digne nappes show significantly higher thermal maturity with RSCM
315 temperatures exceeding 180°C and reaching up to 275°C. The shift towards higher RSCM
316 temperatures between the Upper Jurassic-Early Cretaceous and deeper stratigraphic units of the
317 Early-Middle Jurassic has also been observed in stratigraphic columns analysed from the Digne
318 Nappe (Célini et al., 2022; Balansa et al., 2023).

319

320 **4.4 Burial histories and temperatures reached in the basin**

321 Burial histories for the Vocontian Basin are presented in Figure 11. Each curve represents burial
322 evolution calculated from a synthesis of stratigraphic thicknesses inferred from the BRGM
323 1/50.000 geological maps covering the basin. A first observation is that the total sediment
324 accumulation in the Vocontian basin appears to have reached a maximum of 6-7 km since the
325 Early Jurassic. This is shown by the decompacted thicknesses of 6800 m in the Die region, or
326 5900 m in Nyons, in the northern and western parts of the basin, respectively. In regions of the
327 basin where the lower Jurassic series are not exposed the total subsidence is obviously lower;
328 it is only 2500 m in the region of Vaison-la-Romaine. Despite these differences, most regions
329 recorded a main phase of burial during the Middle Jurassic, in the Callovian, about 160 Ma
330 (Fig. 11). This phase affected the entire Vocontian Basin. It is shown by the deposition of marl
331 to shale deposits of the “Terres Noires” facies characteristic of the External Alps. During this
332 period about 2 km of “Terres Noires” were deposited (accumulation of 200-400 m/Myr). After

333 the Middle Jurassic, the burial slowed down but continued throughout the Late Jurassic and
334 Early Cretaceous. A second phase of accelerated subsidence took place during the Early
335 Cretaceous, around 130 Ma, in the Hauterivian. It is documented in the Mens section by the
336 deposition of about 700 m of marls and limestones (Fig. 4). A third main phase of burial is
337 recorded around 100-90 Ma (Fig. 11) in 6 out 10 stratigraphic sections. It is characterized by
338 increasing siliciclastic influx revealed by the deposition of sandstones alternating with marls
339 and limestones with a thickness of about 700-800 m (e.g., Nyons, Séderon, Vaison-la-Romaine)
340 (Fig. 10). The Gap, Laragne-Montéglon, and Mens sections, however, record erosion rather than
341 sedimentation at this time. These depositional patterns reveal both uplift in the source regions
342 and structural compartmentalization in the Vocontian basin (Fig. 11). A last episode of
343 subsidence of maximum 350-500 m (e.g., Die, Laragne) is documented during the Eocene-
344 Oligocene (Fig. 11).

345

346 5. Discussion

347 5.1 The Vocontian basin at the time of Mesozoic rifting: E-W trend in thermal gradients 348 and low Ca-rich fluid circulation

349 The Vocontian basin recorded a prolonged phase of subsidence during the Jurassic and
350 Cretaceous (Fig. 11), which is however not associated with a distinct fluid event. This period
351 coincides with the rifting of the European paleomargin as inferred by the thermal evolution of
352 the Variscan crystalline basement of the Pelvoux massif (Boschetti et al., 2025) to the North,
353 and burial history below the Digne Nappe (Célini et al., 2023), which bounds the Vocontian to
354 the east. This latter Eastern rim of the basin was likely inverted during the late stages of the
355 Alpine collision between 12 and 6 Ma (Schwartz et al., 2017). We distinguish a first major
356 phase of sedimentary burial that occurred during the Callovian-Oxfordian, between 170 and
357 160 Ma. It postdates the necking of the European paleomargin as identified in the External
358 Crystalline Massifs (Mohn et al., 2014; Ribes et al., 2020; Dall'Asta et al., 2022) and is
359 synchronous with the opening of the Alpine Tethys (Lemoine, 1987; Manatschal and Müntener,
360 2009). It is recognized in the Vocontian basin, where it is expressed by WNW-ESE extension
361 across the entire basin (Dardeau et al., 1988; Homberg et al., 2013), but it is not recorded in our
362 calcite U-Pb ages. Similar observations can be made for the subsequent extensional Cretaceous
363 event at around 135 Ma, for which no fault of that age is reported. The high temperature
364 measured in the Vocontian basin of the Digne Nappe at this time are interpreted to reflect
365 renewed extension in the basin as the Valaisan domain opened along the European margin
366 (Célini et al., 2023), consistent with continuous burial heating recorded in the Pelvoux massif

367 (Boschetti et al., 2025). This new peak in sedimentation is consistent with a shift from the
368 Middle Jurassic WNW–ESE extension to NNE–SSW extensional regime during the Barremian
369 to Aptian interval (Dardeau, 1988; de Graciansky and Lemoine, 1988; Homberg et al., 2010).
370 This later extensional event is recorded not only throughout the Vocontian Basin (Homberg et
371 al., 2013), but also along its margins. Evidence includes deformation along the Ventoux–Lure
372 fault zone (Beaudoin et al., 1986; Huang et al., 1988), the development of large-scale sliding
373 domains on the Vercors platform (Bièvre and Quesne, 2004), and subsidence in E–W-oriented
374 domains along the Ardèche margin during the same period (Cotillon et al., 1979). Our RSCM
375 analyses show an increase of peak temperatures towards the East of the Vocontian where deeper
376 Lower Jurassic stratigraphic series are exposed (Fig. 6; Table 2). When compared to burial
377 temperature estimates ranging from normal (30°C/km) to high (60°C/km) geothermal gradients,
378 we infer that our RSCM data reveal high to extreme gradients in the East, that is, in the direction
379 of increasing crustal thinning in the Vocontian-Valaisan rift segment (Fig. 6; Table 2). Note
380 that the sharp increase in the geothermal gradients is not necessarily entirely related to crustal
381 thinning but also largely a response of mantle thinning and asthenosphere uprising. The lack of
382 calcite mineralisation at this age in brittle tectonic features is intriguing. Indeed, evidence of
383 mineralization of barite, authigenic quartz and pyrite in the Callovian-Oxfordian shales in the
384 deeper part of the basin is interpreted as reflecting basal fluid flow during peak burial in the
385 Middle Cretaceous, as well as brines related to salt diapirs (Guilhaumou et al., 1996). We
386 suggest that the absence of Middle Cretaceous calcites can reflect the fact that 1) faulting
387 occurred at a depth too shallow for calcite precipitation and/or 2) subsequent burial to depth of
388 2-3 km, in the East, led to the dissolution of previous Middle Cretaceous calcites in response to
389 changing physical conditions (e.g., pH, temperature). In addition, mechanical decoupling in the
390 Triassic salt layer during extension may have resulted in the localization of fluid flow and
391 deformation at the base of the basin.

392 A third depositional phase occurred around 100-90 Ma, in agreement with syn-faulting deposits
393 along the Clausis and Glandage fault systems in the Vocontian/Dévoluy basin (Fig. 11, 3)
394 (Gidon et al., 1970; Arnaud et al., 1974) and strike-slip motions along the Toulourenc faults in
395 the Ventoux-Lure massif (Montenat et al., 2004). On a broader scale, this tectonic phase
396 coincides with strike-slip movements along the Cévennes, Nîmes and Durance faults (Montenat
397 et al., 2004; Parizot et al., 2022), possibly associated with local compression related to diapiric
398 movement at 95-90 Ma (Bilau et al., 2023) and normal faulting reported in Provence (Zeboudj
399 et al., 2025). This episode is a response of the continental rifting between Iberia-Ebro and
400 European plates, and the formation of the Pyrenean rift system (Angrand and Mouthereau,

401 2021) (Fig. 12A). Strike-slip movements along inherited faults (Cévennes, Nîmes, Durance
402 faults) were associated with oblique extension accommodated by overlapping rift segments in
403 the Pyrenean and Vocontian basins (Fig. 12). This complex tectonic setting likely triggered the
404 emergence of continental blocks that can explain the abundance of sandstone deposits during
405 this period in the Vocontian basin (Fig. 4, 11). This interpretation aligns with the documented
406 formation of an uplifted structure in Provence during the Albian-Cenomanian, known as the
407 Durancian Isthmus (Combes, 1990; Guyonnet-Benaize et al., 2010; Chanvry et al., 2020,
408 Marchand et al., 2021). Cooling and exhumation in the Massif Central to the west are also
409 documented from 120-90 Ma (Olivetti et al., 2016), which may have contributed to feeding of
410 the Vocontian basin during this period (Fig. 12A). It should be reminded that the locally
411 complex tectonic evolution of SE France during the Middle-Late Cretaceous is a response to
412 large-scale differential movements between Iberia-Ebro and Adria that accommodated both
413 extension in the Pyrenees-Provence rift and contraction in the Alps (e.g., Le Breton et al., 2021;
414 Angrand and Moutherneau, 2021; Boschetti et al., 2025, In Press).

415

416 **5.2 Post-Mid Cretaceous evolution of the Vocontian basin: U-Pb/calcite dating record of
417 multiple collision and rifting events in the SE basins of France**

418 The oldest calcite U-Pb ages of 84.6 ± 2.4 Ma and 77.7 ± 2.9 Ma reported in the Jurassic strata
419 forming the wall of the Suzette diapir in the “Dentelles de Montmirail” structure are consistent
420 with the age of the onset of the Pyrenees-Provence collision dated around 84 Ma (Angrand and
421 Moutherneau, 2021; Moutherneau et al., 2014; Muñoz, 1992; Teixell et al., 2018; Ford et al.,
422 2022). Those old calcite ages are likely to be related to halokinetic movement of Suzette diapir
423 in response to far-field stresses that trigger tectonic inversion and exhumation all over Europe
424 (Moutherneau et al., 2021). These ages can also be related to folding along E-W trending folds
425 in the Dévoluy massif, affecting the Early Cretaceous units and associated to erosional surface
426 dated to Coniacian-Santonian (Fig. 3B) (ca. 85 Ma) (Flandrin, 1966; Lemoine, 1972; Gidon et
427 al., 1970; Arnaud et al., 1974), or the end of diapiric movement during extension in southern
428 Provence (Wicker and Ford, 2021). In the Pyrenees exhumation seems to increase from 75-70
429 Ma (Moutherneau et al., 2014) and this is recorded regionally in SE of France by the cooling of
430 the Pelvoux to the Maures-Tanneron massifs (Fig. 12A) (Boschetti et al., 2025, In Press). This
431 timing is further in line with the earliest surface deformation, which is recorded around 75 Ma
432 (Parizot et al., 2021). U/Pb ages of 72.0 ± 3.7 Ma and 71.2 ± 8.1 Ma associated with folding
433 during N20°E compression are consistent with the latest sinistral reactivation of the Cévennes
434 fault from 76 Ma (Parizot et al., 2021). These ages can also be related to folding along E-W

435 axis in the Dévoluy massif, affecting the Early Cretaceous units and associated to erosional
436 surface estimated to occur during Turonian-Coniacian-Santonian (Fig. 3) (ca. 85 Ma) (Flandrin,
437 1966; Lemoine, 1972; Gidon et al., 1970; Arnaud et al., 1974).
438 Our data resolve another later N20°E contractional stage dated at 50.0 ± 4.3 (Fig. 6). It is well
439 identified also in Provence in the U/Pb age dataset (Zeboudj et al., 2025) and correspond to a
440 N-S compressive phase spanning from 59 to 34 Ma. This stage is regarded as the culmination
441 of the Pyrenean-Provençal collision (Bestani et al., 2016; Balansa et al., 2022) (Fig. 12B). This
442 episode is related to the acceleration of collision at ca. 50 Ma caused by dynamic changes in
443 Africa motion, and North Altantic opening (e.g. Moutherneau et al., 2021). In northwestern
444 Europe, the Eocene also announces the onset of opening of the aborted rift system of the West
445 European Rift (WER) (e.g. Séranne et al., 1999; Dèzes et al., 2004; Moutherneau et al., 2021).
446 The WER stage is well represented in the Vocontian basin as indicated by eight U/Pb dates
447 ranging from 30.4 ± 2.7 to 24.3 ± 1.3 Ma (Fig. 12C), which coincides with an extensional phase
448 (35–23 Ma) also documented in Provence, western Alps, eastern Pyrenees, and Valencia
449 Trough, coeval with the late activities of the West European Rift (Merle and Michon, 2001;
450 Ziegler and Dèzes, 2006). In our study region the shallow depth of iso-velocity contour $V_s=4.2$
451 km.s^{-1} , considered to be a proxy for the Moho (Schwartz et al., 2024), confirms a significant
452 crustal thinning in the Valence-Rhone depression (Fig. S1, Supplementary Material 1). It should
453 also be noted that the Late Eocene-Early Oligocene period coincided with the onset of
454 deposition in the flexural basin of the Alpine foreland (Ford et al., 1999). The deflection of the
455 European margin is likely increasing the extensional stresses associated with the WER. From
456 Chattian-Aquitanian times, at ca. 23 Ma, the opening of the Gulf of Lions and of the Ligurian
457 basin (e.g., Séranne et al., 1999; Jolivet et al., 1999, 2020) commenced following the demise of
458 the WER (Moutherneau et al., 2021) (Fig. 12C). The excellent preservation of the Oligocene-
459 Miocene extensional phase suggests positive feedbacks between crustal thinning (Fig. S1,
460 Supplementary Material 1) and physical conditions become favourable to calcite precipitation
461 closer to the surface, as the basin was exhumed during the former Late Cretaceous shortening.
462 The youngest calcite U/Pb ages of 12.2 ± 3.2 Ma, 12.5 ± 5.2 Ma, 7.8 ± 0.6 Ma and 7.0 ± 2.2
463 Ma are associated with NE-SW compression. This result agrees with the westward propagation
464 of the Alpine deformation front, which migrated forelandward from 15 to 7 Ma in the Vercors
465 massif (Bilau et al., 2023) (Fig. 12D). This timing also coincides with the exhumation of Alpine
466 external crystalline massifs, such as the Belledonne and Pelvoux massifs (e.g. Beucher et al.,
467 2012; Girault et al., 2022; Boschetti et al., 2025).
468

469 **CONCLUSION**

470 The goal of this study was to provide a refined chronology of deformation in the Vocontian
471 Basin using an integrated approach combining U-Pb calcite geochronology, RSCM
472 thermometry, and subsidence analysis. First, this study highlights the absence of mid-
473 Cretaceous syn-rift calcites associated with the opening of the Vocontian Basin. This is possibly
474 related to dissolution during subsequent burial, or reflect the localization of fluid flow and strain
475 in the basal Triassic salt layer during the mid-Cretaceous extension. The temporal distribution
476 of dated brittle structures reveals three main deformation episodes: (1) Late Cretaceous to
477 Paleocene calcite precipitation associated with Pyrenean-Provençal convergence and diapirism;
478 (2) Oligocene extensional phases tied to the West European Rift opening; and (3) Miocene
479 strike-slip reactivation and contraction linked to the Alpine orogeny. These events are
480 superimposed onto a long-term subsidence history that records major burial phases during the
481 Jurassic and Cretaceous. Thermal data from RSCM analyses delineate a sharp eastward increase
482 in geothermal gradients, suggesting enhanced crustal thinning and/or diapiric activity in the
483 eastern part of the basin. This work highlights the possible mismatch between the tectonic
484 evolution of a region and the tectonic history inferred from calcite U-Pb dating, which is
485 sensible to burial history and the physical conditions required to precipitate syn-deformation
486 calcite.

487

488 **Declaration of Competing Interest**

489 The authors declare that they have no known competing financial interests or personal
490 relationships that could have appeared to influence the work reported in this paper.

491

492 **Availability of data material**

493 The dataset(s) supporting the conclusions of this article is(are) available in Supplementary
494 Material 1.

495

496 **Acknowledgments**

497 Authors would like to thank BRGM and the RGF program which allows the founding this
498 project.

499

500 **Author's contribution**

501 LB is the corresponding author who carried out the field investigation, analysis, interpretation
502 and drafting of the manuscript. MP carried out the field investigations, analysis and review of
503 the manuscript. FM carried out the field investigation, interpretation, drafting a review of the
504 manuscript. GH carried out the U-Pb analysis and review of the Manuscript. SS and YR carried
505 out the field investigation and review of the manuscript. DB carried out interpretation and
506 discussion and AL carried out analysis of Raman data.

507 **Funding**

508 This study was made possible thanks to ministerial funding from the SDU2E doctoral school at
509 Toulouse University and by additional funding by the RFG-Alps programme, coordinated
510 by the BRGM.

511

512 **References**

513 Allen, P. A., & Allen, J. R.: Basin analysis: Principles and application to petroleum play
514 assessment. John Wiley & Sons, 2013.

515 Angelier, J.: Inversion of field data in fault tectonics to obtain the regional stress—III.
516 A new rapid direct inversion method by analytical means. *Geophysical Journal
517 International*, 103(2), 363-376. <https://doi.org/10.1111/j.1365-246X.1990.tb01777.x>,
518 1990.

519 Angrand, P., & Mouttereau, F.: Evolution of the Alpine orogenic belts in the Western
520 Mediterranean region as resolved by the kinematics of the Europe-Africa diffuse plate
521 boundary. *BSGF-Earth Sciences Bulletin*, 192(1), 42.
522 <https://doi.org/10.1051/bsgf/2021031>, 2021.

523 Arnaud H., Charollais J., Delamette M. & Portault B. : Crétacé supérieur. Chaînes
524 subalpines. In: S. Debrand-Passard et al., Eds, *Synthèse géologique du Sud-Est de la
525 France*. – Mém.BRGM, 125, 355-359, 1984.

526 Balansa, J., Espurt, N., Hippolyte, J. C., Philip, J., & Carigt, S.: Structural evolution of
527 the superimposed Provençal and Subalpine fold-thrust belts (SE France). *Earth-Science
528 Reviews*, 227, 103972. <https://doi.org/10.1016/j.earscirev.2022.103972>, 2022.

529 Balansa, J., Lahfid, A., Espurt, N., Hippolyte, J. C., Henry, P., Carigt, S., & Fasentieux, B.:
530 Unraveling the eroded units of mountain belts using RSCM thermometry and cross-
531 section balancing: example of the southwestern French Alps. *International Journal of
532 Earth Sciences*, 112(2), 443-458. <https://doi.org/10.1007/s00531-022-02257-3>, 2023.

533 Bestani, L., Espurt, N., Lamarche, J., Bellier, O., & Hollender, F.: Reconstruction of the

534 Provence Chain evolution, southeastern France. *Tectonics*, 35(6), 1506-1525-

535 <https://doi.org/10.1002/2016TC004115>, 2016.

536 Beaudoin, B., Friès, G., Joseph, P., Bouchet, R., & Cabrol, C. : Tectonique

537 synsédimentaire crétacée à l'ouest de la Durance (S.-E. France). *Comptes rendus de*

538 *l'Académie des sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l'univers,*

539 *Sciences de la Terre*, 303(8), 713-718, 1986.

540 Beucher, R., van der Beek, P., Braun, J., & Batt, G. E.: Exhumation and relief

541 development in the Pelvoux and Dora-Maira massifs (Western Alps) assessed by

542 spectral analysis and inversion of thermochronological age transects. *Journal of*

543 *Geophysical Research: Earth Surface*, 117(F3). <https://doi.org/10.1029/2011JF002240>,

544 2012.

545 Bièvre, G., & Quesne, D.: Synsedimentary collapse on a carbonate platform margin μ

546 (lower Barremian, southern Vercors, SE France). *Geodiversitas*, 26(2), 169-184, 2004.

547 Bilau, A., Rolland, Y., Dumont, T., Schwartz, S., Godeau, N., Guihou, A., & Deschamps, P.,

548 2023. Early onset of Pyrenean collision (97–90 Ma) evidenced by U–Pb dating on

549 calcite (Provence, SE France). *Terra Nova*, 35(5), 413-423.

550 <https://doi.org/10.1111/ter.12665>, 2004

551 Boschetti, L., Mouthereau, F., Schwartz, S., Rolland, Y., Bernet, M., Balvay, M., ... & Lahfid,

552 A.: Thermochronology of the western Alps (Pelvoux massif) reveals the longterm

553 multiphase tectonic history of the European paleomargin. *Tectonics*, 44(2),

554 e2024TC008498. <https://doi.org/10.1029/2024TC008498>, 2025

555 Boschetti, L., Rolland, Y., Mouthereau, F., Schwartz, S., Milesi, G., Munch, P., Bernet, M.,

556 Balvay, M., Thiéblemont, D., Bonno, M., Martin, C. Monié, P.: Thermochronology of

557 the Maures-Tanneron crystalline basement: Insights for SW Europe Triassic to Miocene

558 tectonic history. *Swiss Journal of Geoscience*. <https://doi.org/10.1186/s00015-025-00485-8>. In Press

560 Célini, N. : Le rôle des évaporites dans l'évolution tectonique du front alpin: le cas de la

561 nappe de Digne (Doctoral dissertation, Université de Pau et des Pays de l'Adour), 2020.

562 Célini, N., Pichat, A., Mouthereau, F., Ringenbach, J. C., & Callot, J. P.: Along-strike

563 variations of structural style in the external Western Alps (France): Review, insights

564 from analogue models and the role of salt. *Journal of Structural Geology*, 105048.

565 <https://doi.org/10.1016/j.jsg.2023.105048>, 2023.

566 Célini, N., Pichat, A., Mouthereau, F., Ringenbach, J. C., & Callot, J. P.: Along-strike

567 variations of structural style in the external Western Alps (France): Review, insights
568 from analogue models and the role of salt. *Journal of Structural Geology*, 179, 105048.
569 <https://doi.org/10.1016/j.jsg.2023.105048>, 2024.

570 Chanvry, E., Marchand, E., Lopez, M., Séranne, M., Le Saout, G., & Vinches, M. :
571 Tectonic and climate control on allochthonous bauxite deposition. Example from the
572 mid-Cretaceous Villeveyrac basin, southern France. *Sedimentary Geology*, 407,
573 105727. <https://doi.org/10.1016/j.sedgeo.2020.105727>, 2020.

574 Combes, P. J. : Typologie, cadre géodynamique et genèse des bauxites françaises.
575 *Geodinamica Acta*, 4(2), 91-109. <https://doi.org/10.1080/09853111.1990.11105202>,
576 1990.

577 Cotillon, P., Ferry, S., Busnardo, R., Lafarge, D., & Renaud, B.: Synthèse
578 stratigraphique et paléogéographique sur les faciès urgoniens du Sud de l'Ardèche et du
579 Nord du Gard (France SE). *Geobios*, 12, 121-139. [https://doi.org/10.1016/S0016-6995\(79\)80055-8](https://doi.org/10.1016/S0016-6995(79)80055-8), 1979.

581 Dall'Asta, N., Hoareau, G., Manatschal, G., Centrella, S., Denèle, Y., Ribes, C., & Kalifi, A. :
582 Structural and petrological characteristics of a Jurassic detachment fault from the Mont-
583 Blanc massif (Col du Bonhomme area, France). *Journal of Structural Geology*, 159,
584 104593. <https://doi.org/10.1016/j.jsg.2022.104593>, 2022.

585 Dardeau, G., Atrops, F., Fortwengler, D., De Graciansky, P. C., & Marchand, D. : Jeux
586 de blocs et tectonique distensive au Callovien et à l'Oxfordien dans le bassin du Sud-Est
587 de la France. *Bulletin de la Société géologique de France*, 4(5), 771-777, 1988.

588 Debèlmas, J. : La zone subbriançonnaise et la zone valaisanne savoyarde dans le cadre
589 de la tectonique des plaques. *Géologie Alpine*, 77, 3-8, 1988, 2001.

590 Delvaux, D., & Sperner, B.: New aspects of tectonic stress inversion with reference to
591 the TENSOR program. <https://doi.org/10.1144/GSL.SP.2003.212.01.06>, 2003.

592 Debrand-Passard, S. : Synthèse géologique du Sud-Est de la France (Vol. 1).
593 Editions BRGM de Graciansky, P.C., & Lemoine, Marcel., 1988. Early Cretaceous
594 extensional tectonics in the southwestern French Alps; a consequence of North-
595 Atlantic rifting during Tethyan spreading. *Bulletin de la Société géologique de France*,
596 4(5), 733-737, 1984.

597 Dèzes, P., Schmid, S. M., & Ziegler, P. A. : Evolution of the European Cenozoic Rift
598 System: interaction of the Alpine and Pyrenean orogens with their foreland lithosphere.
599 *Tectonophysics*, 389(1-2), 1-33. <https://doi.org/10.1016/j.tecto.2004.06.011>, 2004.

600 Donard, A., Pottin, A. C., Pointurier, F., & Péchéyran, C.: Determination of relative rare

601 earth element distributions in very small quantities of uranium ore concentrates using
602 femtosecond UV laser ablation–SF-ICP-MS coupling. *Journal of Analytical Atomic*
603 *Spectrometry*, 30(12), 2420-2428, 2015.

604 Espurt, N., Angrand, P., Teixell, A., Labaume, P., Ford, M., de Saint Blanquat, M., & Chevrot,
605 S. Crustal-scale balanced cross-section and restorations of the Central Pyrenean belt
606 (Nestes-Cinca transect): Highlighting the structural control of Variscan belt and
607 Permian-Mesozoic rift systems on mountain building. *Tectonophysics*, 764, 25-45.
608 <https://doi.org/10.1016/j.tecto.2019.04.026>, 2019.

609 Flandrin, J. : Sur l'âge des principaux traits structuraux du Diois et des Baronnies.
610 *Bulletin de la Société géologique de France*, 7(3), 376-386.
611 <https://doi.org/10.2113/gssgbull.S7-VIII.3.376>, 1966.

612 Ford, M., Lickorish, W.H. & Kusznir, N.J.: Tertiary foreland sedimentation in the
613 southern Subalpine chains, SE France: a geodynamic analysis. *Basin Research*, 11, 315–
614 336. <https://doi.org/10.1046/j.1365-2117.1999.00103.x>, 1999

615 Ford, M., & Lickorish, W. H.: Foreland basin evolution around the western Alpine Arc.
616 <https://doi.org/10.1144/GSL.SP.2004.221.01.04>, 2004.

617 Ford, M., Masini, E., Vergés, J., Pik, R., Ternois, S., Léger, J., ... & Calassou, S.:
618 Evolution of a low convergence collisional orogen: a review of Pyrenean orogenesis.
619 *BSGF-Earth Sciences Bulletin*, 193(1), 19. <https://doi.org/10.1051/bsgf/2022018>, 2022.

620 Gidon, M., Arnaud, H., Pairis, J. L., AprAHAMIAN, J., & Uselle, J. P. : Les
621 déformations tectoniques superposées du Dévoluy méridional (Hautes-Alpes). *Géologie*
622 Alpine, 46, 87-110, 1970.

623 Girault, J. B., Bellahsen, N., Bernet, M., Pik, R., Loget, N., Lasseur, E., ... & Sonnet, M.:
624 Exhumation of the Western Alpine collisional wedge: New thermochronological data.
625 *Tectonophysics*, 822, 229155. <https://doi.org/10.1016/j.tecto.2021.229155>, 2022.

626 Guilhaumou, N., Touray, J. C., Perthuisot, V., & Roure, F., Palaeocirculation in the
627 basin of southeastern France sub-alpine range: a synthesis from fluid inclusions studies.
628 *Marine and Petroleum Geology*, 13(6), 695-706. [https://doi.org/10.1016/0264-8172\(95\)00064-X](https://doi.org/10.1016/0264-8172(95)00064-X), 1996.

630 Guyonnet-Benaize, C., Lamarche, J., Masse, J. P., Villeneuve, M., & Viseur, S. : 3D
631 structural modelling of small-deformations in poly-phase faults pattern. Application to
632 the Mid-Cretaceous Durance uplift, Provence (SE France). *Journal of Geodynamics*,
633 50(2), 81-93. <https://doi.org/10.1016/j.jog.2010.03.003>, 2010.

634 Hoareau, G., Claverie, F., Pecheyran, C., Barbotin, G., Perk, M., Beaudoin, N. E., ... & Rasbury,

635 E. T.: The virtual spot approach: a simple method for image U-Pb carbonate
636 geochronology by high-repetition rate LA-ICP-MS. EGUsphere, 2024, 1-35.
637 <https://doi.org/10.5194/egusphere-2024-2366>, 2024.

638 Hoareau, G., Claverie, F., Pecheyran, C., Paroissin, C., Grignard, P. A., Motte, G., ... & Girard,
639 J. P.: Direct U-Pb dating of carbonates from micron-scale femtosecond laser ablation
640 inductively coupled plasma mass spectrometry images using robust regression.
641 Geochronology, 3(1), 67-87. <https://doi.org/10.5194/gchron-3-67-2021>, 2021.

642 Homberg, C., Barrier, E., Mroueh, M., Muller, C., Hamdan, W., & Higazi, F.: Tectonic
643 evolution of the central Levant domain (Lebanon) since Mesozoic time.
644 <https://doi.org/10.1144/SP341.12>, 2010.

645 Homberg, C., Schnyder, J., & Benzaggagh, M.: Late Jurassic-Early Cretaceous faulting
646 in the Southeastern French Basin: does it reflect a tectonic reorganization?. Bulletin de
647 la Société géologique de France, 184(4-5), 501-514.
648 <https://doi.org/10.2113/gssgbull.184.4-5.501>, 2013.

649 Hippolyte, J. C., Angelier, J., Bergerat, F., Nury, D., & Guieu, G.: Tectonic-stratigraphic
650 record of paleostress time changes in the Oligocene basins of the Provence, southern
651 France. Tectonophysics, 226(1-4), 15-35. [https://doi.org/10.1016/0040-1951\(93\)90108-V](https://doi.org/10.1016/0040-1951(93)90108-V). 1993

653 Huang, Q., Geometry and tectonic significance of Albian sedimentary dykes in the Sisteron
654 area, SE France, J. Struct. Geol., 10, 453–462, 1988.

655 Jolivet, L., Frizon de Lamotte, D., Mascle, A., & Séranne, M.: The Mediterranean
656 basins: Tertiary extension within the Alpine orogen—An introduction. Geological
657 Society, London, Special Publications, 156(1), 1-14.
658 <https://doi.org/10.1144/GSL.SP.1999.156.01.02>, 1999

659 Jolivet, L., Menant, A., Roche, V., Le Pourhiet, L., Maillard, A., Augier, R., ... & Canva, A.:
660 Transfer zones in Mediterranean back-arc regions and tear faults. Bulletin de la Société
661 Géologique de France, 192(1). <https://doi.org/10.1051/bsgf/2021006>, 2021.

662 Joseph, P., Beaudoin, B., Sempere, T., & Maillart, J. : Vallées sous-marines et systèmes
663 d'épandages carbonatés du Berriasien vocontien (Alpes méridionales françaises). Bull.
664 Soc. Geol. Fr, 8, 363-374, 1988.

665 Kouketsu, Y., Mizukami, T., Mori, H., Endo, S., Aoya, M., Hara, H., ... & Wallis, S.: A
666 new approach to develop the Raman carbonaceous material geothermometer for low-
667 grade metamorphism using peak width. Island Arc, 23(1), 33-50.
668 <https://doi.org/10.1111/iar.12057>, 2014.

669 Lacombe, O., Parlangeau, C., Beaudoin, N. E., & Amrouch, K. : Calcite twin formation,
670 measurement and use as stress-strain indicators: a review of progress over the last
671 decade. *Geosciences*, 11(11), 445. <https://doi.org/10.3390/geosciences11110445>, 2021.

672 Lahfid, A., Beyssac, O., Deville, E., Negro, F., Chopin, C., & Goffé, B. (2010). Evolution of
673 the Raman spectrum of carbonaceous material in low-grade metasediments of the Glarus
674 Alps (Switzerland). *Terra nova*, 22(5), 354-360. <https://doi.org/10.1111/j.1365-3121.2010.00956.x>, 2010.

675

676 Le Breton, E., Brune, S., Ustaszewski, K., Zahirovic, S., Seton, M., & Müller, R. D. :
677 Kinematics and extent of the Piemont–Liguria Basin–implications for subduction
678 processes in the Alps. *Solid Earth*, 12(4), 885-913. <https://doi.org/10.5194/se-12-885-2021>, 2021.

679

680 Lemoine, M. : Rythme et modalités des plissements superposés dans les chaînes
681 subalpines méridionales des Alpes occidentales françaises. *Geologische Rundschau*, 61,
682 975-1010. <https://doi.org/10.1007/BF01820902>, 1972.

683 Lemoine, M., Tricart, P. and Boillot, G.: Ultramafic and gabbroic ocean floor of the
684 Ligurian Tethys (Alps, Corsica, Apennines): in search for a genetic model. *Geology*, 15:
685 622-625, 1987.

686 Manatschal, G., & Müntener, O.: A type sequence across an ancient magma-poor ocean–
687 continent transition: the example of the western Alpine Tethys ophiolites.
688 *Tectonophysics*, 473(1-2), 4-19. <https://doi.org/10.1016/j.tecto.2008.07.021>, 2009

689 Marchand, E., Séranne, M., Bruguier, O., & Vinches, M. : LA-ICP-MS dating of detrital
690 zircon grains from the Cretaceous allochthonous bauxites of Languedoc (south of
691 France): Provenance and geodynamic consequences. *Basin Research*, 33(1), 270-290.
692 <https://doi.org/10.1111/bre.12465>, 2021.

693 Merle, O., & Michon, L.: The formation of the West European Rift; a new model as
694 exemplified by the Massif Central area. *Bulletin de la Société géologique de France*,
695 172(2), 213-221. <https://doi.org/10.2113/172.2.213>, 2021.

696 Mohn, G., Manatschal, G., Beltrando, M., & Haupert, I.: The role of rift-inherited hyper-
697 extension in Alpine-type orogens. *Terra Nova*, 26(5), 347-353.
698 <https://doi.org/10.1111/ter.12104>, 2014.

699 Montenat, C., Janin, M. C., & Barrier, P. : L'accident du Toulourenc: une limite
700 Tectonique entre la plate-forme provençale et le Bassin vocontien à l'Aptien–Albien (SE
701 France). *Comptes rendus. Géoscience*, 336(14), 1301-1310, 2004.

702 Mouthereau, F., Filleaudeau, P. Y., Vacherat, A., Pik, R., Lacombe, O., Fellin, M. G., ... &

703 Masini, E.: Placing limits to shortening evolution in the Pyrenees: Role of margin
704 architecture and implications for the Iberia/Europe convergence. *Tectonics*, 33(12),
705 2283-2314. <https://doi.org/10.1002/2014TC003663>, 2014.

706 Mouthereau, F., Angrand, P., Jourdon, A., Ternois, S., Fillon, C., Calassou, S., ... & Baudin, T.:
707 Cenozoic mountain building and topographic evolution in Western Europe: impact of
708 billions of years of lithosphere evolution and plate kinematics. *BSGF-Earth Sciences*
709 *Bulletin*, 192(1), 56. <https://doi.org/10.1051/bsgf/2021040>, 2021.

710 Muñoz, J. A.: Evolution of a continental collision belt: ECORS-Pyrenees crustal
711 balanced cross-section. In *Thrust tectonics* (pp. 235-246). Dordrecht: Springer
712 Netherlands, 1992.

713 Olivetti, V., Godard, V., Bellier, O., & Aster Team.: Cenozoic rejuvenation events of
714 Massif Central topography (France): Insights from cosmogenic denudation rates and
715 river profiles. *Earth and Planetary Science Letters*, 444, 179-191.
716 <https://doi.org/10.1016/j.epsl.2016.03.049>, 2016.

717 Parizot, O., Missenard, Y., Haurine, F., Blaise, T., Barbarand, J., Benedicto, A., & Sarda, P.:
718 When did the Pyrenean shortening end? Insight from U-Pb geochronology of syn-
719 faulting calcite (Corbières area, France). *Terra nova*, 33(6), 551-559.
720 <https://doi.org/10.1111/ter.12547>, 2021.

721 Parizot, O., Missenard, Y., Barbarand, J., Blaise, T., Benedicto, A., Haurine, F., & Sarda, P.:
722 How sensitive are intraplate inherited structures? Insight from the Cévennes Fault
723 System (Languedoc, SE France). *Geological Magazine*, 159(11-12), 2082-2094.
724 <https://doi.org/10.1017/S0016756822000152>, 2022.

725 Ribes, C., Ghienne, J. F., Manatschal, G., Dall'Asta, N., Stockli, D. F., Galster, F., ... & Karner,
726 G. D.: The Grès Singuliers of the Mont Blanc region (France and Switzerland):
727 stratigraphic response to rifting and crustal necking in the Alpine Tethys. *International*
728 *Journal of Earth Sciences*, 109, 2325-2352. <https://doi.org/10.1007/s00531-020-01902-z>, 2020.

730 Roure, F., Brun, J. P., Colletta, B., & Van Den Driessche, J.: Geometry and kinematics
731 of extensional structures in the Alpine foreland basin of southeastern France. *Journal of*
732 *Structural Geology*, 14(5), 503-519. [https://doi.org/10.1016/0191-8141\(92\)90153-N](https://doi.org/10.1016/0191-8141(92)90153-N),
733 1992.

734 Saspiturry, N., Lahfid, A., Baudin, T., Guillou-Frottier, L., Razin, P., Issautier, B., ... & Corre,

735 B.: Paleogeothermal gradients across an inverted hyperextended rift system: Example
736 of the Mauléon Fossil Rift (Western Pyrenees). *Tectonics*, 39(10), e2020TC006206.
737 <https://doi.org/10.1029/2020TC006206>, 2020.

738 Schito, A., Romano, C., Corrado, S., Grigo, D., & Poe, B.: Diagenetic thermal evolution
739 of organic matter by Raman spectroscopy. *Organic Geochemistry*, 106, 57-67.
740 <https://doi.org/10.1016/j.orggeochem.2016.12.006>, 2017.

741 Schwartz, S., Gautheron, C., Audin, L., Dumont, T., Nomade, J., Barbarand, J., ... & van der
742 Beek, P.: Foreland exhumation controlled by crustal thickening in the Western Alps.
743 *Geology*, 45(2), 139-142, 2017

744 Schwartz, S., Rolland, Y., Nouibat, A., Boschetti, L., Bienveignant, D., Dumont, T., ... &
745 Mouthereau, F.: Role of mantle indentation in collisional deformation evidenced by
746 deep geophysical imaging of Western Alps. *Communications Earth & Environment*,
747 5(1), 17. <https://doi.org/10.1038/s43247-023-01180-y>, 2024.

748 Séranne, M.: The Gulf of Lion continental margin (NW Mediterranean) revisited by
749 IBS: an overview. *Geological Society, London, Special Publications*, 156(1), 15-36.
750 <https://doi.org/10.1144/GSL.SP.1999.156.01.03>, 1999.

751 Séranne, M., Couëffé, R., Husson, E., Baral, C., & Villard, J. : The transition from
752 Pyrenean shortening to Gulf of Lion rifting in Languedoc (South France)—A tectonic-
753 sedimentation analysis. *BSGF-Earth Sciences Bulletin*, 192(1), 27, 2021.

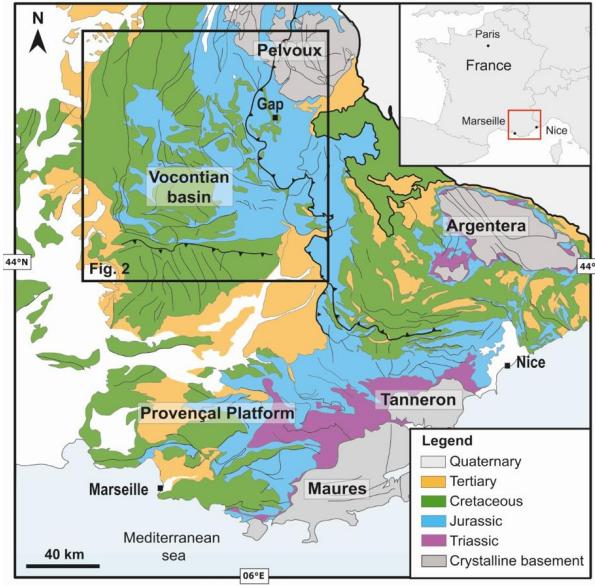
754 Teixell, A., Labaume, P., Ayarza, P., Espurt, N., de Saint Blanquat, M., & Lagabrielle, Y.:
755 Crustal structure and evolution of the Pyrenean-Cantabrian belt: A review and new
756 interpretations from recent concepts and data. *Tectonophysics*, 724, 146-170.
757 <https://doi.org/10.1016/j.tecto.2018.01.009>, 2018.

758 Trümpy, R.: A possible Jurassic-Cretaceous transform system in the Alps and the
759 Carpathians. <https://doi.org/10.1130/SPE218-p93>, 1988.

760 Turco, E., Macchiavelli, C., Mazzoli, S., Schettino, A., & Pierantoni, P. P. : Kinematic
761 evolution of Alpine Corsica in the framework of Mediterranean mountain belts.
762 *Tectonophysics*, 579, 193-206, 2012.

763 Wicker, V., & Ford, M.: Assessment of the tectonic role of the Triassic evaporites in the
764 North Toulon fold-thrust belt. *BSGF-Earth Sciences Bulletin*, 192(1), 51.
765 <https://doi.org/10.1051/bsgf/2021033>, 2021.

766 Zeboudj, A., Lacombe, O., Beaudoin, N. E., Callot, J. P., Lamarche, J., Guihou, A., & Hoareau,
767 G.: Sequence, duration, rate of deformation and paleostress evolution during fold
768 development: Insights from fractures, calcite twins and U-Pb calcite geochronology in


769 the Mirabeau anticline (SE France). *Journal of Structural Geology*, 105460.

770 <https://doi.org/10.1016/j.jsg.2025.105460>, 2025.

771 Ziegler, P. A., & Dèzes, P.: Crustal evolution of western and central Europe.

772 <https://doi.org/10.1144/GSL.MEM.2006.032.01.03>, 2006.

773

774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816

Figure 1: Simplified geological map of SE France. Location of the study area.

817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866

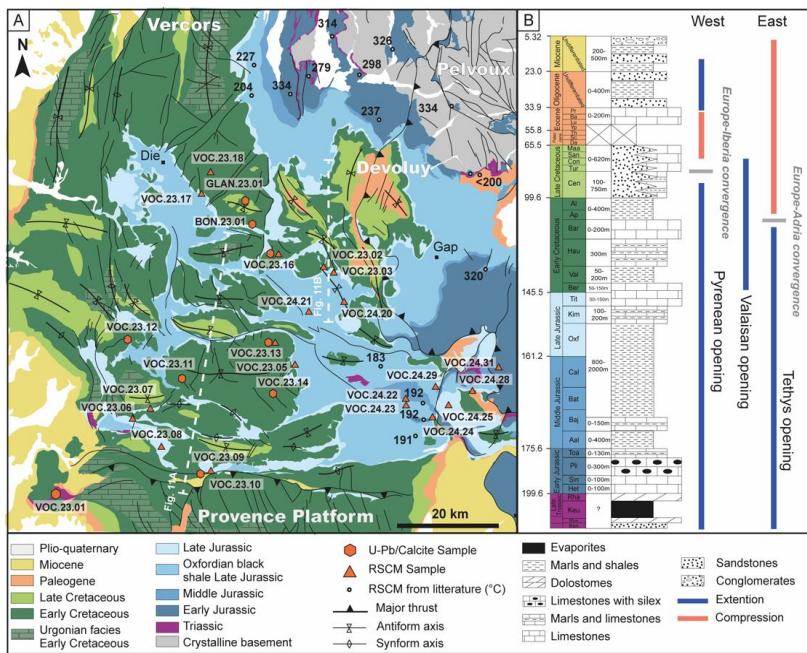


Figure 2: A) Geological map of Vocontian basin with sample location and Raman data in °C from Bellanger et al. (2015) and Céline et al. (2023). B) General stratigraphic section of the Vocontian basin and main tectonic events.

Figure 3: North-South geological cross-section of the Vocontian basin (A) and the Dévoluy massif (B). Location is presented in Fig. 2. Coniacian and Santonian are missing as there is a sedimentary gap (see in the text).

867

868

869

870

871

872

873

874

875

876

877

878

879

880

Die⁰

881

Mens¹

882

Dieulefit²

883

Luc³

884

en

885

Diois⁴

886

Gap⁵

887

Nyons⁵

888

Serres⁶

889

Laragne⁷

890

Montéglion

891

Vaison⁸

892

la

893

Romaine⁸

894

Séderon⁹

895

896

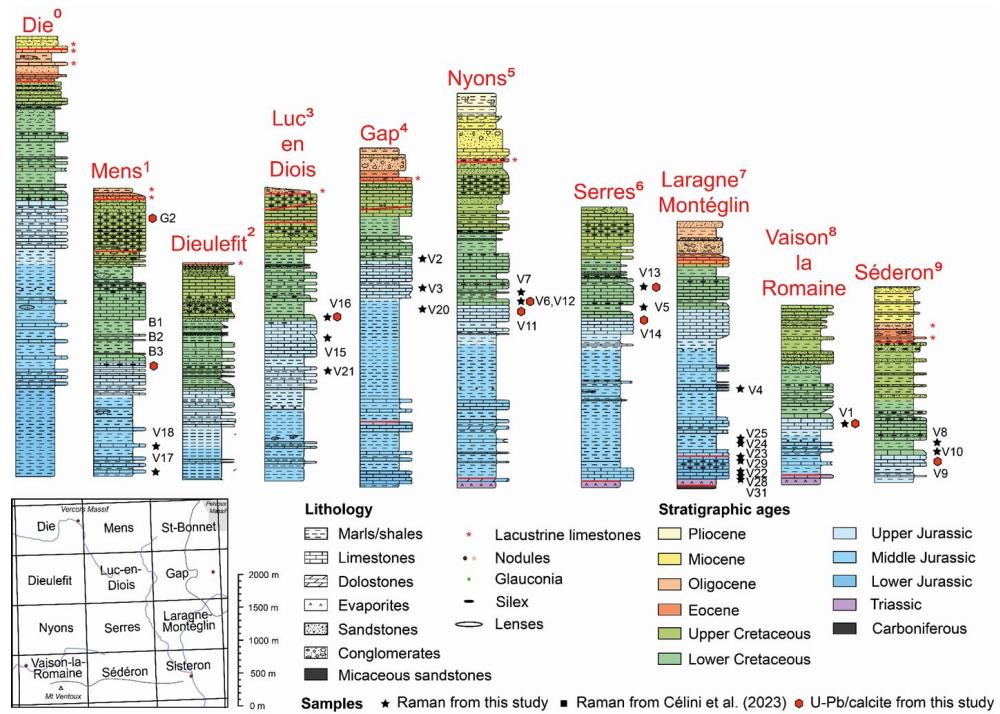


Figure 4: Stratigraphic logs corresponding to each geological notice of BRGM maps from the Vocontian basin. Sample names are shortened from V.23.X to VX for simplification and space in the figure.

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

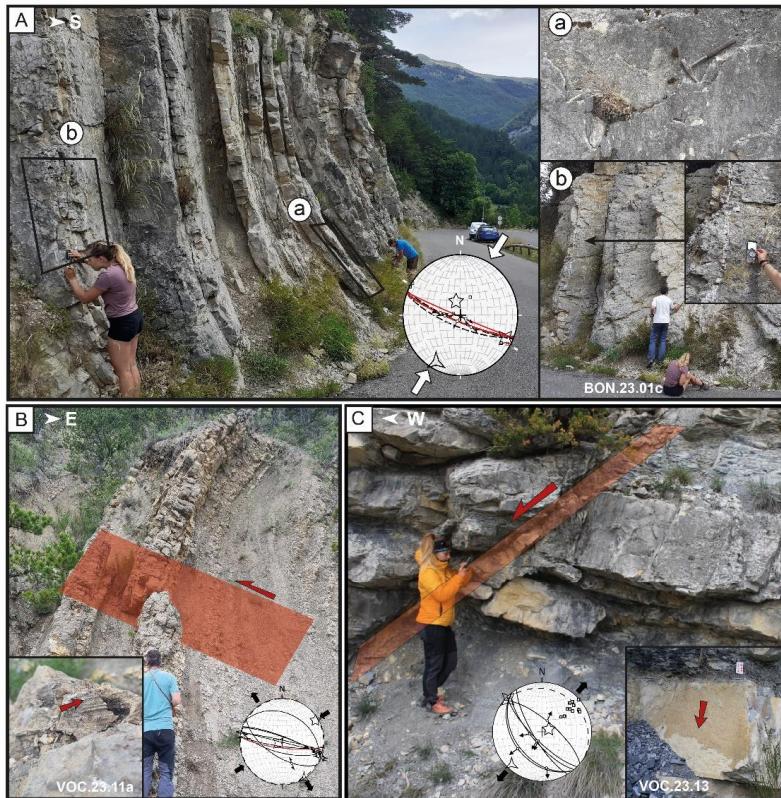
941

942

943

944

945


946

947

948

949

950

951 *Figure 5: Main geological structures associated to their corresponding measurement and U-Pb age. A)*
952 *sample BON.23.01. B) sample VOC.23.11. C) sample VOC.23.13.*

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

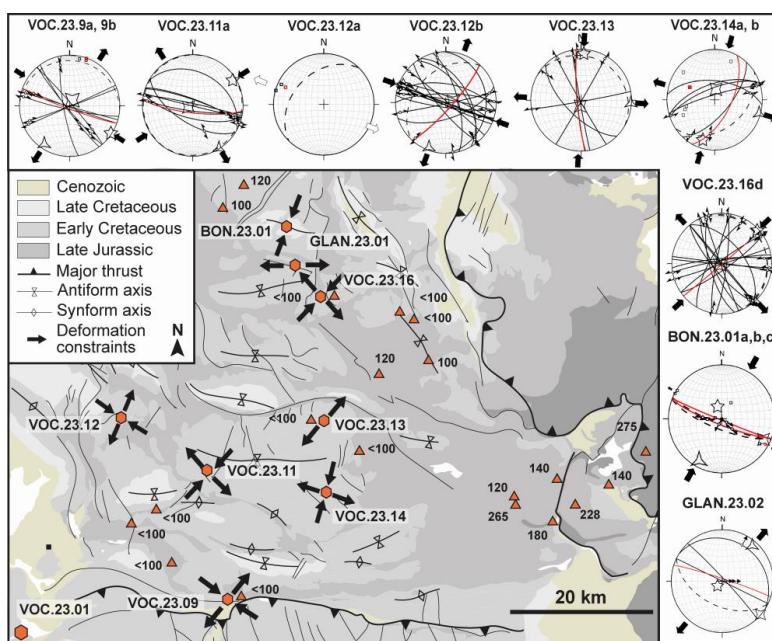


Figure 6: Simplified geological map with structural analysis of each dated sample and location of Raman thermometry results given in °C.

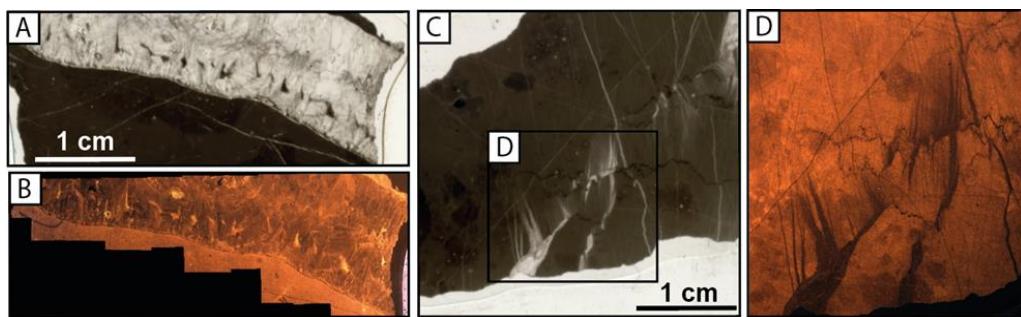


Figure 7: Examples of LPNA (A and C) and cathodoluminescence microphotographs (B and D) of two different types of U/Pb-dated calcite veins. A and B sample VOC-23-01. C and D sample VOC-23-11a.

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

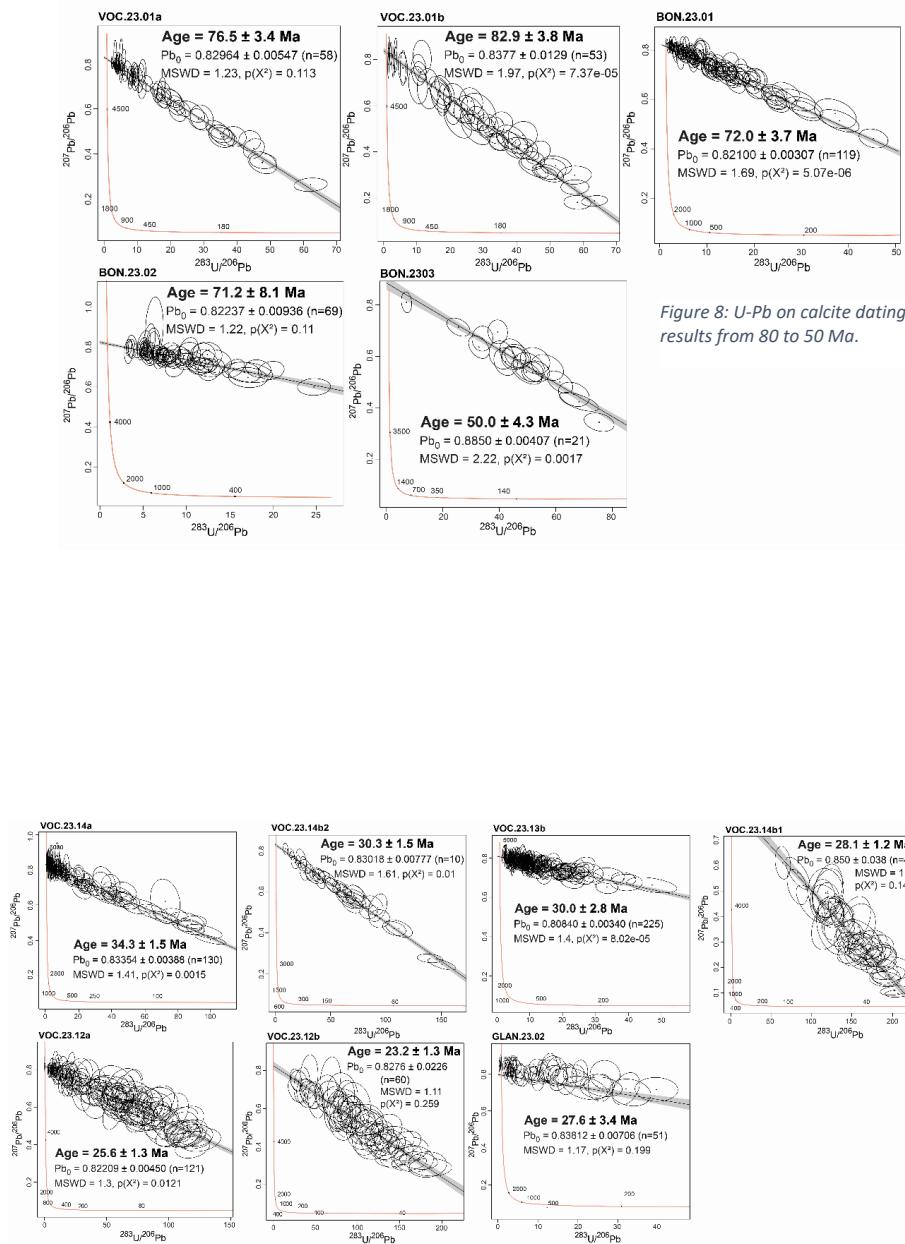


Figure 8: U-Pb on calcite dating results from 80 to 50 Ma.

Figure 9: U-Pb on calcite dating results from 30 to 20 Ma.

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

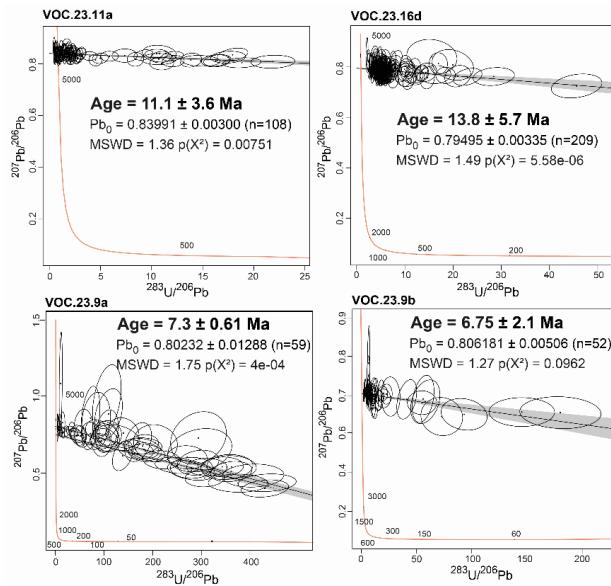


Figure 10: U-Pb on calcite dating results from 12 to 7 Ma.

1084

1085

1086

1087

1088

1089

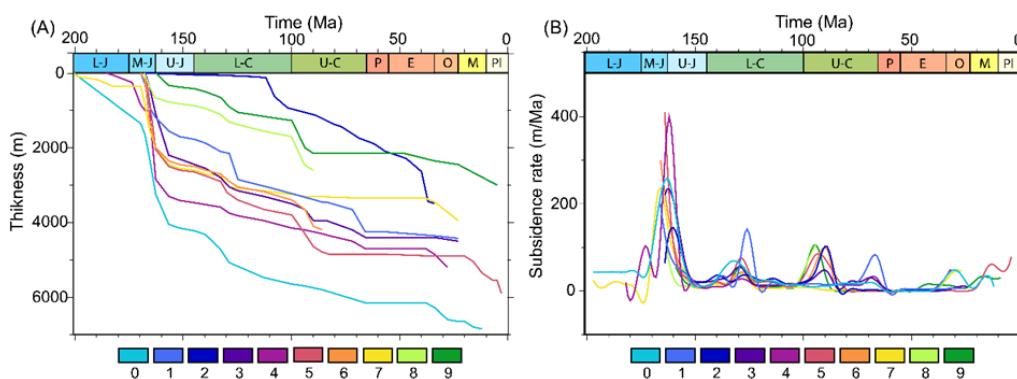


Figure 11: A) Burial history computed after the synthetic stratigraphic sections shown in Figure 10. B) evolution of sediment accumulation rate through time. 0: Die; 1: Dieulefit; 2: Gap; 3: Laragne-Montéglin; 4: Luc-en-Diois; 5: Mens; 6: Nyons; 7: Séderon; 8: Serre; 9: Vaison-la-Romaine. L: lower; mi: middle; u: upper; J: jurassic; C: cretaceous; P: Paleocene; E: Eocene; O: Oligocene; M: Miocene; pl: Pliocene.

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

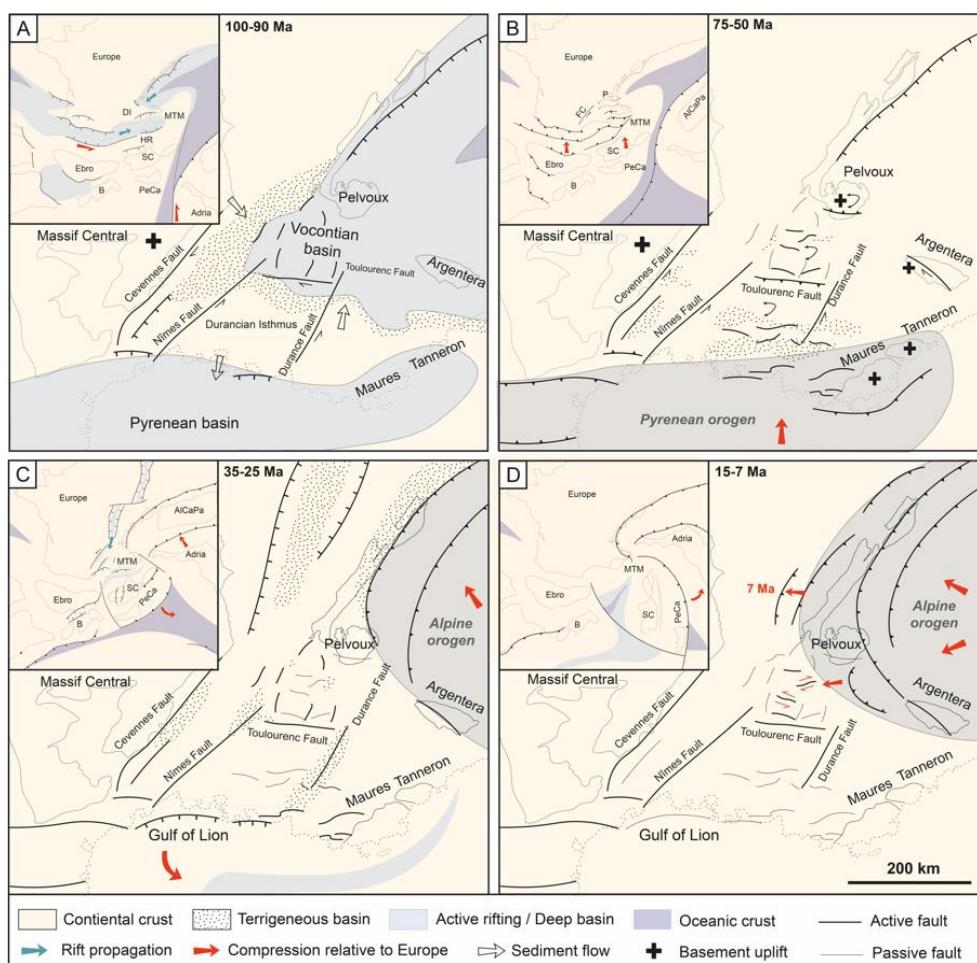


Figure 12: Regional tectonic and paleogeographical reconstructions of SE France showing the evolution of the Vocontian basin since the Middle Cretaceous (modified after Boschetti et al., 2025b). A) Rifting in overlapping Pyrenean-Vocontian rift segments at 110-90 Ma. B) Pyrenees-Provence collision phase from 75 to 50 Ma. C) Opening of the West European Rift and onset of Alpine foreland fold and thrust belt tectonics. D) Alpine collision and westward propagation of deformation front. SC: Corsica-Sardinia; B: Balearics; C: Chartreuse; V: Vercors.

Table 1: Calcite sample types and corresponding measurements and ages.

Sample	Lat	Long	Structures	n	σ1	σ2	σ3	ϕ	U-Pb (Ma)	Error (Ma)
VOC.23.01a	44.159326	5.049163	Vein + Strike slip	-	-	-	-	-	76.5	3.4
VOC.23.02b	44.159326	5.049163	Vein	-	-	-	-	-	82.9	3.8
VOC.23.9a	44.190622	5.47628	Strike-slip (Reverse)	13	02/124	80/025	10/214	0.6	7.3	0.61
VOC.23.9b	44.190622	5.47628	Vein (Associated 9a)	11	73/098	16/291	04/200	0.5	6.75	2.1
VOC.23.11a	44.367914	5.352686	Strike-slip (Post-fold)	6	17/0.23	71/185	05/292	0.5	11.1	3.6
VOC.23.12a	44.437467	5.293520	Vein	-	-	-	-	-	25.6	1.3
VOC.23.12b	44.437467	5.293520	Vein + Strike slip	17	10/292	78/078	06/201	0.5	23.2	1.3
VOC.23.13b	44.417889	5.657694	Normal fault	14	78/069	05/315	10/223	0.5	30	2.8
VOC.23.14a	44.328944	5.631972	Vein (Associated 14b)	-	-	-	-	-	34.3	1.5
VOC.23.14b1	44.328944	5.631972	Strike-slip (Normal)	6	17/197	73/007	03/106	0.5	30.3	1.5
VOC.23.14b2	44.328944	5.631972	Strike-slip (Normal)	6	17/197	73/007	03/106	0.5	28.1	1.2
VOC.23.16d	44.575833	5.640667	Strike-slip (Reverse)	20	04/048	86/234	00/138	0.5	13.8	5.7
BON.23.01a	44.62582	5.60985	Plane from fold	11	36/205	04/112	54/017	0.27	72	3.7
BON.23.01	44.62582	5.60985	Plane from fold	11	36/205	04/112	54/017	0.27	71.2	8.1
BON.23.01	44.62582	5.60985	Vein	11	36/205	04/112	54/017	0.27	50	4.3
GLAN.23.02	44.68617	5.59384	Normal fault	4	62/203	04/300	27/032	0.5	27.6	3.4

1129

1130

Table 2: Raman Thermometry data.

Sample	Lat °N	Lon °E	Stratigraphic Age (Ma)	Log/Map	Burial T (30°C/km)	Burial T (60°C/km)	RSCM T (°C)	1s
VOC.23.02	44.556889	5.772778	142	Gap	52	104	<100	
VOC.23.03	44.546834	5.801242	156	Gap	57	114	<100	
VOC.23.05	44.354736	5.668139	135	Serres	51	102	<100	
VOC.23.06	44.296138	5.281886	142	Nyons	51	102	<100	
VOC.23.07	44.299667	5.312604	142	Nyons	51	102	<100	
VOC.23.08	44.227526	5.433728	137	Sederon	75	150	<100	
VOC.23.10	44.221778	5.429244	142	Sederon	77.5	155	<100	
VOC.23.13	44.417889	5.657694	124	Serres	34.5	69	<100	
VOC.23.16	44.575833	5.640667	142	Luc-en-Diois	61.5	123	<100	
VOC.24.17	44.681803	5.414283	167	Mens	122	245	100	20
VOC.24.18	44.698656	5.419786	166	Mens	105	211	120	20
VOC.24.20	44.502694	5.820133	156	Gap	57	114	100	20
VOC.24.21	44.464336	5.697017	157	Luc-en-Diois	69	138	120	20
VOC.24.22	44.316244	5.959372	169	Laragne-Monteglin	93	186	120	20
VOC.24.23	44.308639	5.956206	166	Laragne-Monteglin	73	147	265	12
VOC.24.24a	44.281517	6.014347	163	Laragne-Monteglin	58.5	117	180	20
VOC.24.25	44.294617	6.056911	162	Laragne-Monteglin	58.5	117	228	22
VOCY.24.28a	44.328152	6.128097	170	Laragne-Monteglin	108	216	140	20
VOC.24.29	44.335796	6.020728	166	Laragne-Monteglin	73	147	140	20
VOC.24.31	44.357159	6.166843	175	Laragne-Monteglin	>108	>216	275	6